PECEIVED — ,0/r¢/¢7

. MS-DY - gfﬁwﬂﬁf%ﬂ

Volume l D2-115002-2

MISSION / SYSTEM
REQUIREMENTS
AND ANALYSES
OCTOBER 1967

- GPO PRICE $

 CFSTI PRICE(S) $ N6 8 190 96

g (ACCESSION ?BER) (THRU)

I A 7t

Hard copy (HC) L,% & 2 (PAc;s) (éu}
crof L5 Va0 S

Microfiche (MF) el 3 TNASA CROR TMX OR/AD NUWBER) (CATEGORY) i

ff 653 July 65

spacecraﬂ
— System

studies
"PHASE B, TASK D

Prepared for &
GEORGE C. MARSHALL SPACE FLIGHT CENTER THE SOFING COMPANY
HUNTSVILLE, ALABAMA SPACE DIVISION

\Z SEATTLE, WASHINGTON




VOYAGER
SPACECRAFT SYSTEM STUDY

°
FINAL TECHNICAL REPORT

PHASE B, TASK D

VOLUME 11
MISSION/SYSTEM REQUIREMENTS AND ANALYSES

D2-115002-2
OCTOBER 1967

Prepared For:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
GEORGE C. MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA

UNDER
CONTRACT NO. NAS8-22602

THE BOEING COMPANY @ SPACE DIVISION e SEATTLE, WASHINGTON

10



r‘;%,ECEiDiNG PAGE BLAN

KNOT Fipep,

-~
¢

D2-115002-2

FOREWORD

This series of documents summarizes the work performed under the George C. Marshall
Space Flight Center contract, NAS 8-22602 entitled, "Voyager Spacecraft System,

Phase B, Task D." The work was performed over the period June 16 through October
16, 1967.

The contracted work consisted of engineering studies leading to a definition of a
Voyager Mars/Spacecraft system capable of performing the 1973 mission. To ensure
flexibility of design, additional analyses were conducted to determine the adapte
ability of the 1973 spacecraft to perform the 1975-1977-1979 Mars missions. The
1973 flight spacecraft definition was used to identify the operational support
equipment including mission-dependent equipment requirements and the software neces-
sary to satisfactorily conduct the 1973 mission operations. Logistics considera-

tions were identified for the 1973 system from point of manufacture through launch
operations.

The contract also required the completion of five selected engineering tasks that

were designed to highlight key areas and lead to specific conclusions and recommenda-
tiobns.

The detailed results of the contracted work is contained in the following reports:

° Summary Report Volume I
D2-115002-1
Mission/System Requirements and Analyses Volume II
D2-115002-2
° Spacecraft Functional Description Volume III
D2-115002-3
° Selected Engineering Tasks Volume IV
D2-115002-4
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1.0 INTRODUCTION AND SUMMARY

This document is the second volume of the Phase B, Task D Final Technical Report
on Voyager spacecraft system studies performed by The Boeing Compeny. These
studies were conducted for the George C. Marshall Space Flight Center under NASA
Contract No. NAS8-22602. The data contained in this document include mission and
system requirements and analyses for the Mars Voyager missions.

1.1 BACKGROUND AND OBJECTIVES

Previous Voyager spacecraft system studies resulted in the analysis, definition,
and functional description of a Voyager flight spacecraft capable of performing a
1971 Mars mission. The spacecraft definition had to be revised to reflect (1) a
change in the first launch opportunity from 1971 to 1973, and (2) a need to
develop a spacecraft system that can be adapted to the 1975, 1977, and 1979
missions with minimum modifications.

To define the flight spacecraft for the 1973 mission, it was necessary to establish
applicable performance and design requirements that also will allow maximum use

of existing 1971 designs in lieu of new designs. Consequently, the first objective
of the studies reported in this volume was to compare and identify common 1971 and
1973 mission and system requirements. The degree of commonality of these require-
ments will indicate the degree to which existing 1971 spacecraft concepts and
designs could satisfy the 1973 mission.

The second objective of the studies was to develop a set of performance and design
requirements for the 1973 spacecraft mission. This set consists of common
1971-1973 requirements as well as requirements unique to the 1973 mission. The
set of 1973 mission requirements is necessary to the revised spacecraft definition
effort.

The third objective of the studies was to develop preliminary spacecraft perform-
ance and design requirements for the subsequent Mars Voyager missions in 1975,
1977, and 1979. These requirements, when reflected on the 1973 spacecraft design,
would ensure that the resulting design could be adapted to these missions with a
minimum of modifications.

Preliminary mission and spacecraft performance and design requirements are
provided in project source documentation. These preliminary requirements must be
assessed. Such assessments may require systems analyses and tradeoffs. Therefore,
the fourth objective of the studies was to perform spacecraft system analyses and
trade studies.

After the establishment of spacecraft performance and design requirements, definition
and description of the spacecraft can be accomplished. With the spacecraft thus
defined, the requirements associated with other spacecraft system elements can

then be established. Such spacecraft system elements include OSE and MDE. These
elements are important because (1) their cost is a considerable fraction of total
program cost, and (2) they contribute to the probability of mission success.
Therefore, the development of preliminary OSE and MDE requirements and concepts

is the fifth objective of the studies documented in this volume.

1-1
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The sixth and final objective of this portion of the contract was to identify
potential Voyager spacecraft logistics problems. This logistics study was
motivated by the large size of the Voyager spacecraft. It is anticipated that,
because of its size, Voyager could present unusual problems in transportation and
handling from point of manufacture to point of launch. These problems, in turn,
could lead to unusual OSE requirements, particularly in handling and shipping
equipment.

1.2  SUMMARY

1.2.1 Mission and System Requirements

Mission and system performance and design requirements were organized into 15
categories pertaining to the (1) mission, (2) spacecraft, (3) spacecraft subsystems,
and (4) interfacing Voyager project elements, e.g., the flight capsule. The
comparison between the 1971 and 1973 requirements, as contained in project source
documentation, revealed that (1) many of the requirements are similar, (2) few of
the requirements are common, and (3) significant differences exist in the areas of
orbit lifetime, flight capsule weight, orbit insertion velocity capability, and
celestial reference occultation durations. Even so, it was concluded that the

1971 spacecraft concepts satisfy the 1973 spacecraft performance and design require-
ments.

Subsequent to the comparison of 1971-1973 requirements, the following were
developed: (1) a set of requirements for the 1973 mission, and (2) preliminary
requirements for the 1975-1977-1979 missions. The 1973 requirements set was
sufficiently complete to allow the definition of the 1973 flight spacecraft. Key
new festures of the 1973 requirements included the following: (1) deletion of the
no-Canopus occultation constraint, (2) increase of the allowable duration of solar
occultation after the first 30 days in orbit, and (3) target weight and reliability
allocations for the flight spacecraft elements. The preliminary 1975-1977-1979
requirements were developed in sufficient depth to allow identification of changes
in spacecraft design concepts. Key new features of the 1975-1977-1979 require-~
ments included (1) Type II Mars transfer trajectories in 1975 and 1977, and

(2) increased weight and power allocations reflecting primarily a heavier flight
capsule and improved spacecraft photoimaging equipment. The impact of the 1975~
1977-1979 requirements was evaluated, as these requirements may require spacecraft
design concept changes in the telecommunication and attitude control subsystems.

1.2.2 System Analyses and Trade Studies

The 1973 mission profile was examined. Key events were identified, which led to
system level analyses and trade studies including the following nine studies.

The objectives of the first study, trajectory selection analysis, were: (1) to
establish that the specified baseline orbit satisfies the orbit lifetime require-
ments and Sun occultation constraint; (2) to assess the capability of the baseline
orbit to satisfy the objectives of the photoimaging experiment; and (3) to define
the interplanetary transfer trajectories, aiming points, and midcourse correction
and orbit trim maneuver requirements that will accommodate the baseline orbit in
the 1973-1975-1977-1979 launch opportunities.

1-2
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The analysis resulted in the following key conclusions:

1) The baseline orbit (500-km periapsis altitude by 18,600-km apoapsis altitude)
satisfies the planetary quarantine constraint.

2) The baseline orbit satisfies the Sun occultation constraint.

3) The baseline orbit provides adequate illumination angle at or near periapsis,
latitude coverage, and wave-of-darkening coverage for the photoimaging
experiment.

L) An orbit insertion AV allocation of 1.59 km/sec satisfies the baseline orbit
requirement.

5) Orbit trinxAV'alloqations for the baseline orbit must be increased from
150 to 210 m/sec to accommodste early arrival dates for the 1973 mission.

6) Three midcourse trajectory corrections will satisfy planetary quarantine and
baseline orbit requirements.

7) By allocating the required 8-day arrival time bias maneuver to the two
planetary vehicles, i.e., + 4 days for the first, and -4 days for the second,
the combined midcourse corrections and biasing maneuver AV requirements can
be achieved with the 210 m/sec allocated to each planetary vehicle.

The objective of the second study, launch delays, was to define alternate modes for
accomplishing a 1973 mission in the event of launch slides beyond the full-
capability launch window. The results of this study indicate that, at best,

launch period increases in excess of 2 months are feasible, provided only a single
flight spacecraft is launched by a Saturn V and a marginal 60-hour Mars orbit is
attained.

The objective of the third trade study, mission energy balance, was to determine
the maximum attainable weight in Mars orbit. The current Saturn V payload
capability was assumed. This study led to the following key conclusions: (1) the
maximum payload weight in Mars orbit is sensitive to arrival date and launch
period (1973 and 1979 in narticul&l’); and (2) prgject Fa}r1nnﬂ nr\n‘F-?nnnncy and

ait L - Vi LlVsivaspne

minimum reasonable launch periods rule out Type I trajectories in 1975 and 1977.

The objectives of the fourth trade study, encounter communication distance, was to
identify mission modes that minimize Mars-to-Earth communication distance at
encounter. Study results indicate that:

1) The greatest communication distance reduction in 1973 (35%) derives from a
high-arrival-energy, early-arrival-date mission.

2) A two-step orbit insertion technique allow= an additional 6% communication
distance reduction. (This is achieved by first deorbiting the capsule from a
highly eccentric orbit and then adjusting the orbit).

3) Loading the propellant tanks to their full (1979) capacity results in a
further 1973 communication distance reduction of 15%.

1-3
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The objective of the fifth trade study, capsule canister separation, was to
determine the time to separate the forward capsule-sterilization canister during
the mission sequence. This study led to the conclusion that the canister could be
separated prior to orbit insertion. However, to increase confidence in the

maintenance of planetary quarantine, and to simplify flight capsule thermal control,
it is recommended that the canister be separated subsequent to orbit insertion.

The obJjective of the sixth study, propulsion engine selection, was to select a
preferred engine concept for Voyager from the following four engine concepts:

(1) lunar module descent engine (LMDE), (2) LMDE with a cluster of four C-1
engines, (3) Agena Model 8517, and (4) the Transtage engine. As a result of this
study, the LMDE engine was selected as the preferred Voyager engine for all space-
craft propulsion maneuvers.

The objective of the seventh trade study, orbital data rate, was to establish the
most reasonable amount of data to be transmitted to Earth during the 1973 Mars
orbital mission. The study results indicated that a total data return of

1.57 x 1011 bits during the 180-day orbital mission will enable high resolution

(10 meters average) coverage of 0.1% of the planet's surface, and medium resolution

(300 meters average) coverage of 75% of the planet's surface. The attendant
average data rate is 12,500 bps.

The objective of the eighth trade study, laser telecommunications feasibility, was
to evaluate the feasibility of laser telecommunications for Voyager. The results
of this study indicated that a laser telecommunication experiment is feasible

and, therefore, recommended for the 1975 mission. If successful development is
shown, then a change to laser telecommunication in 1977 and 1979 can be implemented.

The objective of the ninth and last trade study reported in this volume, RF high
data rate, was to explore the possibility of increasing the information bandwidth
of an RF spacecraft-to-Earth data link. This study resulted in the following

key conclusions: (1) spacecraft effective radiated power (ERP) can be increased
by increasing antenna diameter without tightening spacecraft pointing requirements,
and (2) use of an analog VSB-AM/PM carrier modulation technique in the 1977-1979
Voyager mission will result in a 4,5-db (i.e., a factor of 3) improvement over

the biorthogonally coded digital phase shift keying/phase modulation (PSK/PM)
technique that was selected for the baseline 1973 spacecraft.

1.2.3 Preliminary OSE and MDE Requirements and Concepts

An OSE concept compatible with the 1973 flight spacecraft configuration (described
in Volume III of this final technical report) was established. The OSE included
launch control equipment (LCE), system test complex (STC), assembly, handling,

and shipping equipment (AHSE), and fueling and servicing equipment (FSE). For

the established OSE concept, test and operation flows were developed. Preliminary
OSE requirements and related test locations were then identified. Interfaces
between the Voyager project systems were also identified to ensure OSE compati-

bility. Next the commonality between the test system OSE and the MDE was established.

This avoids equipment duplication.

After the establishment of the above requirements and interfaces, existing Apollo ACE

and Saturn ESE concepts were evaluated for applicability to Voyager. It was

1-4




-

D2-115002-2

concluded that Voyager flight spacecraft OSE should use the same basic concept as
the Apollo ACE and Saturn ESE, i.e., automated testing involving operator consoles,
computers, and special purpose interfacing equipment. Such a system would be mobile,
thereby reducing system test equipment impact on schedule, location, and facilities.

1.2.4  Spacecraft Logistics Considerations

Spacecraft level test and operational flows were reviewed. Particular attention
was given to assembly and test, site support, and transportation. Problems that
could not be solved easily by normal design practices and normal logistics
practices were then identified. These problems were segregated into the following
three categories: (1) problems involving interfaces between other contractors

or Government agencies, (2) equipment availability problems resulting from schedule

conflicts with other programs, and (3) common Voyager project-element problems that
should have a common solution.

The following eight specific logistiecs problem areas were identified: (1) space-
craft fueling procedure, (2) payload module integration, (3) payload stack test,
(4) cleanliness and contamination, (5) training, (6) payload module malfunction,
(7) payload launch operations system interface, and (8) spares considerations.
Recommended solutions to all eight problems then were developed.

Detailed discussions of the objective, approach, results, and conclusions for the
mission/system requirements and analyses studies are given in the following
sections.
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2.0 MISSION AND SYSTEM REQUIREMENTS

This section contains the mission and system requirements for the Voyager Mars
flight spacecraft design. The requirements were developed primarily for the 1973
mission. Preliminary requirements for the 1975, 1977, and 1979 missions were de=-
veloped primarily for assessing mission versatility of the 1973 spacecraft design.
The steps involved in developing the above requirements are shown in Figure 2-1
and were as follows:

1) A comparison was made of the previously developed 1971 mission requirements
and the initial 1973 mission specification to determine the degree of
commonality.

2) A compilation of 1973 requirements was made by using (a) data developed in the
first step, (b) definition of the natural environment contained in NASA
TMX-53616, (c) results of key mission/system analyses and trade studies, and
(d) data obtained through coordination with MSFC.

3) Preliminary requirements for the 1975, 1977, and 1979 mission were generated.

L) The gross effect that the 1975, 1977, and 1979 preliminary requirements have
on a 1973 spacecraft configuration was determined.

The requirements resulting from the above four steps control the flight spacecraft
configuration. Preliminary requirements for operational support equipment (OSE)
and mission dependent equipment (MDE) are given in a subsequent section of this
volume.

2.1 1971/1973 REQUIREMENT COMPARISON

2.1.1 Purpose

The purpose of this study was to assess the applicability of the 1971 spacecraft
concepts to perform the 1973 mission.

2.1.2 Scope

The comparison between missionswas established by evaluating the 1971 and 1973
mission requirements. The Phase 1A, Task B Final Report (Boeing Document
DR-82709-6) was the data source for the 1971 mission requirements. The 1973

| Mission Specification was used as a preliminary source of 1973 requirements.

The 1973 mission requirements were subsequently augmented and modified by MSFC

" guidelines as indicated in Section 2.2.

The requirements for the 1971/1973 launch opportunities were presented and compared.
The requirements were organized into 15 major headings. These headings are used as
subject matter groupings of applicable parameters. The same organization of data
is used in Sections 2.2, 2.3, and 2.4, so that continuity is maintained in all the
requirement presentations.

[
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The 15 subject-matter headings of the 1971/1973 requirements comparison (see Table 2-1)

] Mission Definition and Profile

° Mission Requirements--Operational Life

° Trajectory Parameters--Interplanetary Transfer
° Trajectory Parameters--Operations Planning
° Trajectory Parameters--Mars Orbit

) Target Weight Allocations

° General Design Requirements

L4 Propulsion Requirements

° Capsule Support Requirements

o Data Return Requirements

] General Capsule Requirements

L4 Electrical Power Requirements

° Reliability Allocations

° Spacecraft Stabilization Requirements

L Science Payload Requirements

2.1.3 Conclusions

The comparison was conducted at the mission and system level. The comparison
resulted in identifying few common, but many similar requirements. Significant
differences were found in the following parameters:

Orbit lifetime (mission requirements - operational lifetime)
Flight capsule weight (target weight allocations)

Orbit insertion velocity (propulsion requirements)

Celestial occultation times (trajectory parameters - Mars orbit)

Even so, it was concluded that the 1971 spacecraft concepts satisfy the 1973 space-
craft performance and design requirements.

2.2 1973 REQUIREMENTS
2.2.1 ose

The aim in this study was to establish a definitive set of requirements for the
1973 Mars Voyager mission.

N
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2.2.2  Scope

The requirements were established by using the 1973 Voyager Mars Mission Specifi-
cation and through the following coordination with MSFC: 1) 1st MSFC/Boeing Tech-
nical Coordination Meeting on Task D, 2) MSFC letters R-AS-A67-100 and -121, and
3) MSFC Task D Guidelines dated July 1k, 1967. Natural environment requirements
were obtained from NASA TMX-5366, while requirements in selected areas were gener-
ated through mission and system analyses (Section 3.0).

2.2.3 Results

The 1973 requirements are structured into the established subject/categories:

L] Mission Definition and Profile--Table 2-2, Figure 2-2

° Mission Requirements--Operational Life--Table 2-3

] Trajectory Parameters--Interplanetary Transfer--Table 2-3, Figures 2-3
through -5

° Trajectory Parameters--Operations Planning--Table 2-4, Figure 2-6

° Trajectory Parameters--Mars Orbit--Table 2-5, Figure 2-7

° Target Weight Allocations--Table 2-6

° General Design Requirements--Tables 2-7 and -8, Figure 2-8

° Propulsion Requirements--Table 2-9

° Capsule Support Requirements--Table 2-10, Figure 2-9

° Data Return Requirements--Table 2-11

° General Capsule Requirements--Table 2-8

° Electrical Power Requirements--Table 2-10

. Reliability Allocations--Tables 2-11 and 2-12

° Spacecraft Stabilization Requirements--Table 2-13

° Science Payload Requirements--Tables 2-13, 2-14 and 2-15

Mission Definition and Profile, Table 2-2, presents an example of how growth
potential is built into the flight spacecraft. The propulsion subsystem for the
1973 spacecraft is specified to be compatible with the 1979 mission (maximum weight
planetary vehicle) without resizing. Table 2-3 and the associated figures show
how versatility is built into the system. This was accomplished by specifying an
envelope of performance capability within which the spacecraft must operate, in
lieu of a single-point design. To provide a trajectory for spacecraft design and
system analysis studies, a specific arrival date was selected for the Mars transfer

trajectory (Table 2-4). A baseline Mers orbit for the 1973 spacecraft mission is
specified in Table 2-5.

2-8
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ARRIVAL DATE - 1974
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Trip Time (days)

e 275x10° (Comm. Dist. - km) 240 220 200 180
April / /
160
3= April 2, 1974 20 Days
| 250x10°
24}
L ) 140
March  F— 225x10
y| . © 28.8 (km2/sec2)
22k=_200x10° 120
Feblz_
L 175x10°
28—
23— 5 = 3.4 (km/sec)
—— 150x10
Jan 13}
3._
[ 12510°
2y! I U T T N A TR M N ERG NN S R
8 7 17 27 7 17 27 6 16 26 5 15 25 5 15 25
June July Aug Sept Oct

LAUNCH DATE - 1973
BASIS:
® Type | trajectories

® Cj limit based on weight allocations
for 6,000 Ib capsule (case B).

o Vip limit based on 500 km by 18,500 km

12.4 hr. orbit, with £ 20 degree apsidal
rotation.

Figure 2-3:  TRAJECTORY PARAMETERS — INTERPLANETARY TRANSFER
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*99% Confidence Envelope

LOG OF
DENSITY

(Kg /Km®)

] | | | | |
0 200 400 600 800 1000 1200 1400
ALTITUDE (Km)

Figure 2-7:  MARS ATMOSPHERE DENSITY MODEL
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D2-115002-2
. Table 2-12:  RELIABILITY ALLOCATIONS — 1973 Mission
| . ALLOCATION
SYSTEM ELEMENTS PRIME SUB SUB
‘ Flight Spacecraft 0.747
Spacecraft Bus 0.750
‘ Power Subsystem 0.991
Computing & Sequencing Subsystem 0.942
Guidance & Control Subsystem 0.983
‘ Radio Subsystem 0.962
Antenna Subsystem 0.995
Telemetry Subsystem 0.995
‘ Data Storage Subsystem 0.923
Structual & Mechanical Subsystem 0.936
Pyrotechnic Subsystem 0.9999
Temperature Control Subsystem 0.9999
‘ Cabling Subsystem 0.9940
‘ . Propulsion Subsystem 0.995
‘ Total Spacecraft
(Excluding Science Payload) 1 of 2 0.936
*
. Science Payload (Estimated) 0.322
Total Spacecraft Each 0.240
(Including Science Payload) 1 of 2 0.422
*Assessment value used pending a total system trade study.
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Table 2-14: 1973 VOYAGER MARS SCIENCE PAYLOAD ALLOCATION

WEIGHT
ITEM
Platform (lb)| Body (Ib) Total (Ib)
® Scan Platform Instruments (Orbital)
Platform 1
Photoimaging television (3) 150 150
Mars IR radiometer 20 20
IR spectrometer, high resolution 30 30
IR spectrometer, broad band 25 25
Atmosphere Polarimeter 9 9
Atmosphere Mass Spectrometer 8 8
Platform 2
UV spectrometer 30 30
® Body Mounted Instruments (Cruise)
Plasma probe 10 10
\a p 8 7
Cosmic ray telescope 5
Cosmic dust detector >
. s 3 3
Trapped radiation detector 3
lon chamber (boom mounted) 3
Total Instruments 272 29 300
Scan Platform No.l _—
Platform Na.2 -
DAE 5
Harness & Miscellaneous 20
(including power switching
electronics)
Contingency 20
Total Weight Allocation 390

* Weight incorporated in the spacecraft bus allotment and Equipment Allocation
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Within the mission requirements expressed above, an iterative evaluation of space-
I craft parameters was conducted to develop a practical and feasible set of spacecraft
‘ requirements. As a result, the target weight allocations specified in Table 2-6
were established. Two weight statement allocations are provided to accommodate
% two potential capsule weights for the 1973 mission.

The planetary vehicle dynamic envelope, shown in Figure 2-8, in conjunction with

data in Tables 2-7 and 2-8, control thz general design features of the planetary
vehicle.

The developed mission and system requirements and significant subsystem parameters,
(e.g., propellant loading, power, quantity of data) interact to affect the space-
craft design. An iterative process of requirement versus implementation was
conducted at the system level. Specific design areas analyzed in this manner are:
1) Propulsion subsystem--Table 2-9

2) Capsule support and electrical power--Table 2-10

3) Data allocation and transmission--Table 2-11

L) Spacecraft stabilization--Table 2-13.

Reliability allocations, Table 2-12, were developed for the spacecraft and its
subsystems. Previous analyses (Phase 1A, Task B data, and Voyager equipment
definition) were extended to cover the 1973 mission profile. The science sub-
systems allocation was established by assessing the hypothetical 1973 science
payload (Table 2-1&) as a single thread subsystem (every experiment must work) .
This approach establishes meaningful reliability allocations, but cannot be used
for inferring probability of mission success. Mission success must be based on a
criterion that accounts for the relative value of each experiment through the

life of the mission. Repetitive data is not necessarily valuable, nor are all
experiments of equal value in fulfilling the missions scientific objectives. A
criterion might be established in which the probability of mission success
approaches the reliability allocation of 0.746 for a single flight spacecraft
excluding the science payload. If the mission success criteria required return of
all the science data for an entire 6-month initial mission, the reliability allcca-
tion of 0.24 for a single flight spacecraft including the science psyload is synon=-
omous with the probability of mission success of a single spacecraft.

Science payload requirements for 1973, Tables 2-13, 2-1k, and 2-15, were developed

to identify the impact of the experiments payload on spacecraft performance such as
power, weight, stability, and pointing capability. These requirements were developed
(see D2-115002-k, Section 4.0) by taking into consideration three aspects of the
science subsystem: (1) usefulness in supporting 1973 mission objectives, 2) compat~-
ibility with the spacecraft and its mission profile, and 3) logical evolution of the

spacecraft science payload through the first four Mars-Voyager missions (1973, 1975,
1977, 1979).

2-31
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2.3  PRELIMINARY 1975-1977-1979 SPACECRAFT REQUIREMENTS

2.3.1 Purpose

The purpose was to establish preliminary spacecraft requirements for 1975-197T7-
1979 Mars Voyager missions.

2.3.2 Scope

The science payload and flight capsule evolution of the 1975-1977-1979 Voyager
missions leads to new requirements. The unique 1975-1977-1979 mission and system
requirements were developed on the basis of new science and flight capsule pay-
loads and the different Earth-Mars trajectory relationships for these subsequent
missions.

2.3.3 Results

Table 2-16 summarizes the changes within the 15 requirement subject headings that
are affected by the 1975, 1977, and 1979 missions. Because many of these effects
were reflected in the 1973 requirements, the impact of requirement changes on
selected areas of spacecraft design is minimized. A major consideration of the
1977 and 1979 missions is the increase in orbital life from 6 to 12 months

(Table 2-16).

The trajectory envelopes for Type I transfers in the 1973 to 1979 missions, and
Type II transfers in 1975 and 1977, are shown in Figure 2-10. Trajectory
parameters are summarized in Tables 2-17 and 2-18.

The trajectory envelopes are consistent in the following details:

1) Total propulsive velocity change ( AV) is 1950 m/sec. The minimum required
orbit insertion AV is defined for each year by subtracting the AV alloca-
tions for (a) midcourse trajectory correction, (b) arrival time biasing,
and (c) orbit trim maneuvers for that mission from the total AV.

2) The conversion from allocated AV to the hyperbolic excess velocity (VﬁP)

limits, required for trajectory envelope definition, is based on a nominal
500-km periapsis, 12.4-hour orbit with assumed apsidal rotations of + 20
degrees. The changes in minimun required orbit insertion AV for the four
missions reflect the changing weight allocations and result in different VhP
limits.

3) Launch vehicle capability is computed for each launch opportunity by consider-
ation of':

o Target weight allocations, Tables 2-19 and 2-20,
° A constant 5000-pound project weight contingency for each mission.

° Geocentric launch energy (C,) versus payload for the AS 506 Saturn V launch
vehicle including shroud allowance considerations.

2-32
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4)  Limitations on the launch asymptote declination (DLA) are compatible with
(a) 2-hour minimum daily launch windows, and (b) launch azimuth ranges of

90 to 115 degrees for Type I transfers in 1973 and 1979, and Type II
transfers in 1975 and 1977.

The impact on requirements for the hardware subsystems were primarily a result of
the increased science subsystem demands on spacecraft capability. These effects
were reflected in additional requirements being placed on the propulsion, power,
stabilization, and telecommunications subsystems, as reflected in Tables 2-21
and 2-22, and Figures 2-1ll and 2-12, respectively. The science payload weights
and power are presented in Table 2-23 and Figures 2-13 through 2-15.

2.4  IMPLICATIONS OF THE 1975-1977-1979 REQUIREMENTS

2.k.1  Purpose

The purpose here was to identify and evaluate the impact of 1975-1977-1979 Voyager
Mars performance and design requirements on the 1973 spacecraft system.

2.4.2  Approach

The difference between the 1973 and 1975-1977-1979 requirements indicates that
spacecraft changes are required for the 1975-1977-1979 missions. Table 2-24
summarizes the impact of these requirements on the 1973 spacecraft design. Detail-
ed descriptions of the impact of the 1975-1977-1979 requirements on the 1973 space~
craft definition are presented in Volume 3, D2-115002-3, Section 1l.1l.5.

2.4.3 Conclusions

The following conclusions resulted from assessing the implications of the 1975~
1977-1979 requirements:

1) Changes to the 1973 Mars Voyage spacecraft are required for the 1975 mission.

2) For the 1977 and 1979 missions, the fixed-mount high-resolution film camera
will have a significant effect on the mission requirements.
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Table 2-22:  SPACECRAFT STABILIZATION REQUIREMENTS

® Maneuver Requirements for Accommodation of Fixed Mount Imaging™

o + 60-degree roll maneuver on each orbit
e + 45-degree pitch maneuver on each orbit
o + 45-degree yaw maneuver on each orbit

e 30-minute inertial hold on each orbit

*Preliminary estimate based on accommodating:

e Viewing cone angles of 90 to 120 degrees (illumination angles of 0 to
30 degrees from terminator)

® Rotational alignment of imaging device with flight path trace on
planet surface

2-42
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3.0 SYSTEM ANALYSES AND TRADE STUDIES

System analyses and trade studies were conducted to assess and supplement the
performance and design requirements for the Mars Voyager spacecraft and missions.
They were then used as an input to the spacecraft design and to mission operations
Planning as applicable, Hardware trades that develop the selection of specific
units of equipment are included in Document D2-115002-3, Spacecraft Functional
Description.

Aspects of the mission and system were selected for analysis on the basis of criti-
cal phases and events during the mission. Nine key system-level studies were chosen.
These are:

1) Trajectory Selection Analysis

2) Launch Delay Study

3) Mission Energy Balance Study

4)  Encounter Communication Distance Study

5) Capsule-Canister Separation Trade

6) Propulsion Engine Selection Study

7) Orbital Data Rate Analysis

8) Laser Telecommunication Feasibility

9) RF High Data Rate Study

The relationship of these studies to the mission profile is shown in Figure 3.0-1.

A detailed discussion of the purpose, approach, results, and conclusions of each of
the above studies is presented in the following sections.

3.1  TRAJECTORY SELECTION ANALYSIS
3.1.1 Purpose

The primary purpose of this study was to assess the requirements imposed on the tra-
Jectory parameters to ensure that the baseline orbit can be attained and can satisfy
the objectives of the orbital photoimeging experiment.

3.1.2 Approach

The baseline orbit (500 by 18,600 km) was analyzed to determine its: (1) lifetime,
(2) ability to satisfy photoimaging experiment objectives, (3) celestial reference
occultation characteristics, (4) orbit trim requirements, and (5) orbit insertion
requirements. Parametric data for the above were also developed for evaluating or-
bits other than the baseline orbit. Interplanetary transfer trajectories for the
1973 mission that satisfy the mission and system performance and design requirements

2.1
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and accommodate the baseline orbit were then defined. Aiming points and midcourse
trajectory correction maneuver requirements for the defined 1973 trajectories were
established. The required velocity and attitude control accuracies were determined.

After the 1973 mission trajectory selection was made, interplanetary trajectories
for the 1975, 1977, and 1979 missions were defined. The specific 1975-1979 trajec-
tory parameters influencing the 1973 spacecraft design were identified.

3.1.3 Mars Orbit Selection

Orbit selection can be divided into two basic, interrelated considerations: orbit
size and orbit orientation., These and other basic orbit parameters are shown in
Figure 3.1-1. Orbit size and orbit orientation are governed by:

° Orbit lifetime within the planetary quarantine constraints

° Spacecraft photoimaging objectives

° Propulsion capability for orbit insertion.

The implication of these criteria on orbit size and orientation is discussed below.
3¢le3el  Orbit Lifetime - 1973

Planetary quarantine requires that the probagility of impacting Mars due to orbit
decay before 1984 shall be less than 8 x 107° (see Figure 3.1-2). To determine the
effect of this requirement on orbit size, an orbit lifetime study was conducted con-
sidering:

[ Atmospheric drag
° Orbit insertion errors
Astronomical perturbations.

Atmospheric Drag and Orbit Insertion Errors -- The most important factor affecting
the lifetime of Voyager orbits around Mars is atmospheric drag. This drag is a
function of the atmosphere model. The results presented here are based on an stmos-
phere model provided by MSFC. For this model, the maximum of the 99% confidence
envelope was used. For a given orbit, the lifetime is directly proportional to the
ballistic coefficient. Figure 3.l-3 shows the ratio of lifetime to ballistic coeffi-
cient as a function of periapsis and apoapsis altitude. These results are based on
a nonrotating atmosphere. The effect of atmospheric rotation on orbit lifetime is
not significant. Moreover, for posigrade orbits, a nonrotating atmosphere will
yield a lower orbit lifetime than a rotating one and, therefore, is conservative.

To ensure that the planetary quarantine requirement is not violated, a probability
analysis has been conducted. The analysis combined the probability of successfully
conducting an orbit trim maneuver with a set of initial dispersions in orbit para-
meters following insertion. From this analysis, periapsis altitude modification
required to satisfy the planetary quarantine constraint cean be determined. The dis-
persions assumed for initial orbit parameters were:

3-3
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ORBIT SIZE AND ORIENTATION APPROACH AND INITIAL ORIENTATION

HP’ Periapsis Altitude Line of Apsides

7/

3 \ ’/—Periapsis
Sun
P Arg.ume.nt of [llumination
/ Periapsis y )) Angle ot
7 i,Orbit Inclination |§Per|c1p5|s
(See Below)
Q .
Longitude of ll-\igze:f

Mars
Vernal
Equinox N¥< Ascending
Node Spacecraft Orbit A
. H 5, Apoapsis Altitude Approach /  Asymptote
Line of Trajectory =%
Apsides
/VHP, Hyperbolic Excess
Velocity
ORBIT INCLINATION
N
/N°"h Pole ADC = Semicircumference
Ground of Equator Toward
Track of Which T Points
Orbit /Surfoce
of Mars

EFG = Semicircumference
Equator of Ground Track of
Orbit Toward Which

'é’ Points

Inclination, i, is the dihedral angle between the orbit plane
and the equator. It is measured positive counterclockwise

from half-plane O-ADC to half-plane O-EFG.
Figure 3.1-1:  DEFINITION OF BASIC ORBIT PARAMETERS
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1+

Periapsis altitude s ¥m 1 o

Orbit period

+

0.409 hours 10

The probability of successfully accomplishing the orbit trim maneuver was estimated
to be 0.99.

A table for the bivariate normal distribution was used to detemmine the number, n,
of standard deviations associated with the probability that the required lifetime is
met should the orbit trim maneuver fail. The valge of n, to accommodate the 0.99
probability of orbit trim success and the 8 x 10~° planetary quarantine allocation,
is 3.91.

The implications of this n value for the lifetime of the baseline orbit (i.e., peri-
apsis altitude = 500 km; period = 12.4t hours) can be determined from Figure 3.1-k4,
This figure relates the orbit lifetime parameter to the periapsis altitude for a
given orbit period. The orbit lifetime parameter, as discussed above, is the ratio
of the orbit lifetime to the ballistic coefficient. The capsule forward steriliza-
tion canister is separated after orbit insertion. Consequently, the governing
ballistic coefficient from orbit lifetime considerations is that of the canister.
For a 6000-pound flight capsule, that parameter is estimated as 0,01 slugs/ft .
Because the canister must stay in orbit for 11 years (1974-1984), the orbit lifetime
parameter is approximately 1000. Fram Figure 3.1-l4, the minimum periapsis altitude
for a 12.4-hour orbit having a life parameter of 1000 is less than 300 km. However,
as indicated previously, dispersions of 3.910 in periapsis altitude and orbit perigd
must be accommodated to ensure a probability of planetary contamination of 8 x 10~
for an 0.99 reliable orbit trim maneuver. Consequently, as indicated in the figure,
a nominal periapsis altitude of 478 km is required. This is slightly lower than the
500 km periepsis of the baseline orbit. The baseline orbit therefore is conserva-
tive from aerodynamic drag considerations.

Astronomical Effects -- The baseline orbit was shown to be safe, considering aero-
dynamic drag only. This must now be checked considering both drag and astronomical
disturbances to the orbit.

For orbits around Mars, the primary astronomical perturbation is caused by the Sun.

e gravitational ancmalics of Mars must also be considered, however, because they
influence the rotation of the orbit with respect to the Sun. Astronomical perturba-
tions are not simple, and general relationships (e.g., Figure 3.1-3) cannot be
obtained. However, for any specific orbit, it is possible to obtain a time history
of periapsis altitude (and all of the orbital elements as well) from which orbit
lifetime is determined. Such studies were conducted for the baseline and other can-
didate orbits. The analysis accounted for the effect of: multiple perturbing bodies,
i.e., Mars and the Sun, gravitational anomalies of Mars, atmospheric drag, and solar
radiation pressure.

-aal

Lifetime predictions for any specific orbit around Mars are limited by knowledge of
the Martian gravity field. The gravity field of Mars accelerates the orbiting
vehicle. This acceleration is a function of: gl) the orbit around Mars, (2) the
mass of Mars, (3) the oblateness, Jo, of Mars, (4) the "pear shape," J;, of Mars,
and (5) higher order tems. Items %l), (2), and (3) are relatively well known;
items (4) and (5) are not known. Fortunately, for orbits with small periapsis alti-
tudes, item (5) can be neglected.

3-7
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3000
.4 hrs = Orbital
Period
1000
% Op =0.409 hr thp=3°9] (45) = 176 km
=2 Gh_= 45 km
L P
< n =3.91
Q M/CDA =0.011 slugs/ﬂ2 (Canister)
=

MSFC Atmosphere,
99% confidence

100 densest model
Op = Standard deviation in orbit period

O h - Standard deviation in orbit periapsis altitude
n - Number of standard deviations

M/CDA - Ballistic coefficient

Minimum Periapsis

Altitude = 478 km

10
» 200 300 400
PERIAPSIS ALTITUDE (Km)
Figure 3.1-4: DETERMINATION OF MINIMUM PERIAPSIS ALTITUDE
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The coefficient, J3 (the "pear-shape" coefficient
in eccentricity and hence in periapsis altitude.
estimated to be 1.5 x 10~

), results in a secular change
The magnitude of J3 has been
by analogy with Earth, but its sign cannot be determined.

Lifetime results for the baseline orbit, including the effects of astronomical

perturbations, are shown in Figure 3.1-5.
350

NN, ""”
300 RV VAY V\ﬁJXA;/\
\\_/\
\
250 Positive 1, —_)
\
_ ) 1
é rog Only ‘
o 200%
S Negative J, I\
=
= |
5 150 |
Z J,  Third harmonic coefficient of
% Mars gravitation potential |
= (pear shape) |
w
a.
100 | |
I
|
s0 b :
|
0 I i i A L Il il . i i A A Ao 1
0 1 2 3 4 5 -6 7 8 9 10 11 12 13 14 15 16 17 18

TIME IN ORBIT (Years)

Figure 3.1-5: HISTORY OF PERIAPSIS ALTITUDE FOR THE DISPERSED

DESIGN ORBIT
The initial periapsis selected here was 500 km minus 3.910, or 324 km; the initial
period was also reduced by 3.910_ . From the figure, the conclusion is that the

baseline orbit is safe in the prgsence of both drag and astronomical perturbations;
the periapsis altitude of 500 km, therefore, is conservative.

Because of the aforementioned orbit insertion errors, the initial planetary
vehicle around Mars will be dispersed with respect to the desired baseline orbit.
An orbit trim maneuver, therefore, will be required to adjust the initial orbit
into the baseline orbit. Two orbit trim maneuvers with a combined AV of

150 m/sec were allocated to satisfy the orbit-adjusting requirement. Consequently,
an analysis was conducted to assess the adequacy of this preliminary allocation.

It was decided to use the orbit trimming capability to control the radius of
periapsis, the radius of apoapsis, the longitude of the ascending node, and the
argument of periapsis. Control of the apsidal radii (i.e., periapsis and
apoapsis) is important, because these radii establish the orbit lifetime and
determine the period. The orbit period, as noted above, controls imaging
coverage and the illumination angle at, and near periapsis. Desired imaging
location and illumination angle also require control of the longitude of the
ascending node and the argument of periapsis.

3-9
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An orbit is defined by six parameters. A maneuver at a specified time can only
control three parameters, because only the spacecraft velocity, which has three
components, is modified by the maneuver. The desired four parameters are
controlled by performing two trim maneuvers. The first trim maneuver corrects
radius of periapsis (R,), radius of apoapsis (R ), and argument of periapsis.
The second maneuver corrects RA’ RP’ and longitude of the ascending node.

The choice of the true anomalies at which the two trim maneuvers are made is used
to minimize the AV required for orbit trim. For the baseline orbit, the true
anomalies that result in minimum orbit trimming AV are given below:

Parameter Corrected Trim True Anomaly

(degrees)
First Trim RP’ RA’ w 110 to 130
Second Trim R,, 210 to 240
2 A Q

The three o errors of the trimmed orbit, following two orbit trims performed to
minimize trim AV, are summarized in Table 3.1-1 for three Mars arrival dates:

Table 3.1-1: ERRORS AFTER ORBIT TRIM MANEUVER
1973 ARRIVAL DATE

30 Errors In Early Middle Late
RP (km) 11 7.1 6.5
T (sec) 65 39 37

w (deg) 4.6 4.6 3.4
2 (deg) 0.04 0.04 0.04
i (deg) 3.3 2.8 3.5
30 Av(m/sec) 211 153 131

The table indicates that the trim AV allocation of 150 m/sec can accommodate
March and April arrival dates. Early arrival dates (i.e., February) will require
increasing the trim AV allocation by approximately 60 m/sec. The planetary
vehicle launch weight penalty associated with such an increase will be significant
(approximately LOO pounds).

3.1.3.2 Spacecraft Photoimaging Objectives

Photoimaging objectives of the Voyager spacecraft are:

1) Good resolution (photography from low altitudes in the vicinity of periapsis).




v
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2) Coverage of a wide latitude band.

3) Illumination of target sites to provide good contrast (preferred illumination
angle of 15 degrees).

It is desirable to control the periapsis location so that these objectives are best

satisfied throughout the mission. As a basis for this study, and for subsequent
trades, the baseline orbit specified in Table 3.1-2 was considered. Figure 3.1-6

TABLE 3.1-2: BASELINE ORBIT DEFINITION

Periapsis Altitude (km) 500

Period (hr) 12.4

Apoapsis Altitude (km) 18,590

Inclination to Martian Equator (deg) +45

Time of First Periapsis Passage ( date) April 4, 1974
(hr, GMT) 0:00

Longitude of Ascending Node (deg) 289.4

Argument of Periapsis (deg) 167.5

illustrates the ground track of the first two revolutions of the baseline orbit
around Mars. The band of favorable illumination for photography covers a latitude
range from -5 to +30 degrees on the first day. While in this latitude-illumination
band, the spacecraft altitude is always less than 1500 km, i.e., below three
periapsis altitudes. This illumination band is centered at O degree longitude.

A shift in initial longitude coverage is obtained by changing the arrival time in
terms of hours. If the arrival were at 19:00 GMI, the favorable illumination
conditions would be centered in the area of 75 degrees longitude (above Syrtis
Major).

Figure 3.1-7 illustrates the illumination-time history of the baseline orbit. The
latitude coverage is good. A band between +29 and -U45 degrees is covered within
120 days. Also, the periapsis point progresses across that latitude band at
favorable illumination angles over the 180-day mission. During this time period,
the optimum illumination angle of 15 degrees is attained at altitudes between

500 (periapsis) and 735 km.
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The nodal separation between adjacent orbit ground tracks is 2.5 degrees. If

photographs covering 100 x 100 km of the planet surface are considered, contiguous

longitudinal photographic coverage at the Equator can be achieved in approximately
T4 days.

The ability in the baseline orbit to observe the wave of darkening is shown in

Figure 3.1-8. The loeci of periapsis and the 15.degree illumination point during
an 180-day orbital mission are given.

Orbits that are favorable from photoimaging considerations, i.e., illumination
and coverage, may violate the Sun occultation constraint (see Section 2.2),

result in undesirable Canopus occultations and be free of Earth occultations which
are desirable for the conduct of atmospheric determination experiments. Figure
3.1-9 presents the solar occultation profile of the baseline orbit. Sun

® Launch Date: August 25, 1973
® Arrival Date: April 4, 1974
® Periapsis Altitude = 500 km

1.3r12— g Orbit Period = 12.4 hours
= ® Inclination = +45 degrees
2 Hours of Number of 120
Q Occultations B
3 1.0}s 2 g
z o =
o £
Z - - m —_—
O 3
< O o
= T <
O o = o
o - £
Z V4
=2
(V)
0 1 ] 1 | 1 0
0 20 40 60 80 100 120 140 160 180

TIME IN ORBIT (Days)

Figure 3.1-9:  BASELINE ORBIT SUN OCCULTATION

occultation occurs when the spacecraft-Sun line-of-sight crosses the limb of Mars.
The design orbit complies with the requirements that no Sun occultation occurs
within the first 30 days of the mission, and that no Sun occultation, thereafter,
exceeds the smaller of 1.5 hours or 12.5% of the orbit's period.

The Earth occultation profile for the baseline orbit is presented in Figure 3.1-10.
A series of short Earth occultations occurs early in the mission, benefitting the
Earth occultation experiment. Longer occultation periods (1.3 hours maximum)
occur in the middle of the mission and permit repetition of the experiment over a
wider band of Martian latitude. Figure 3.1-11 shows the latitude of occultation
as a function of mission duration.
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EARTH OCCULTATION (Hours/Orbit)

LATITUDE (Degrees)
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® Launch Date: August 25, 1973
® Arrival Date: April 4, 1974
® Periapsis Altitude = 500 km
® Orbit Period = 12.4 hours
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Figure 3.1-10: BASELINE ORBIT EARTH OCCULTATION
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Figure 3.1-11: RISE AND SET LATITUDES BASELINE ORBIT EARTH OCCULTATIONS
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To maintain celestial reference throughout the mission, it is desired, though not
required, to avoid Canopus occultation or Canopus sensor interference.

6

® Launch Date: August 25, 1973
® Arrival Date: April 4, 1974
® Periapsis Altitude = 500 km
@ Orbit Period = 12. 4 hours
@ Inclination = +45 degrees
® Tracker Shield Limits
Cone Angle = t 30 degrees
Clock Angle =t 20 degrees
ne Hours of Interference

B ———

INTERFERENCE PERIODS

g

Number of Interference Periods

CANOPUS INTERFERENCE (Hours/Orbit)
w

—————————

100

| 1 | 1 | o
0 20 40 60 80 100 120 140 160 180
TIME IN ORBIT (Days)

Figure 3.1-12: BASELINE ORBIT CANOPUS INTERFERENCE

Figure 3.1-12 presents the Canopus interference history during the 1973 mission for
the baseline orbit. Note that no Canopus occultation occurs during the 180-day

mission, but that on each orbit there is a period when the illuminated portion
of Mars is within the field of view of the Canopus sensor.

The above results indicate that the baseline 500 by 18,600 km orbit is acceptable
from preliminary photoimaging considerations, and Sun, Earth, and Canopus
occultation considerations. Additional trades were then conducted to determine
whether other orbits exist that are superior to the baseline orhit in the above
considerations. These studies were aimed at selecting orbit period/inclination
combinations that result in favorable illumination angles at or near periapsis
throughout the 180-day orbital mission.

It is desirable to have the periapsis altitude as low as possible to maximize
imaging resolution. However, the periapsis altitude must be sufficiently high to
ensure adequate orbit lifetime when uncertainty in Mars atmosphere and orbit
insertion and trim errors are considered. It has been shown that an altitude of
500 km is near the minimum allowsble. This is the value used for the following
orbit studies. Consequently, there are only two parameters to be varied: orbit
orientation, and apoapsis altitude. Orbit orientation is completely defined by
the specification of launch and arrival dates, illumination at initial periapsis,
and orbit inclination.
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Maintenance of relatively constant illumination at periapsis over long periods of
time requires that the relative motion between the line of apsides (i.e., orbit's
major axis) and the Mars-Sun line be minimized. This can be accomplished by
forcing the vector sum of the motion of the orbit line of nodes and line of
apsides to match the motion of the Sun as closely as possible. Typical rates of
apsidal rotation, ¢ , and nodal regression, Q , are given in Figure 3.1-13.

3.0* ®Periapsis Altitude = 500 Km

Nrbir Period
6 Hours

2.0 @ ~ Apsidal Rotation

ANGULAR ROTATION RATES, }, @ (Deg/Day)

ORBIT
0 INCLINATION
(Degrees)
-1.0
e & Q) ~ Nodal Regression
-2.0L Figure 3.1-13: ORBIT ANGULAR ROTATION RATES

The nodal regression, fz, is negative for posigrade (direct) inclinations. The
apparent motion of the subsolar point on Mars is approximastely 0.52 deg/day.
Consequently, to keep pace with the Sun, the natural apsidal rotation must be

large and positive. To obtain this high apsidal rotation, low orbital inclinations
are required. To identify the approximate orbit period/inclination combinations
that minimize the daily change in periapsis illumination, periapsis motion is
resolved into two components, P and N. These two components are parallel and
normal, respectively, to the Sun's motion at the beginning of the mission. They
are shown as a function of orbit period and inclination in Figure 3.1-14. The

data are based on an arrival date of April 4, and an initial periapsis illumination
angle of 15 degrees from the evening terminator. If P is selected to match the
rotational rate of the Sun, i.e., 0.52 deg/day, the corresponding values of N are
defined. The locus of this value of P is superimposed on the N curves in Figure
3.1-14(a). It defines the inclination/period combinations that tend to minimize
the change in illumination angle early in the mission.

The above discussion pertained to posigrade orbits. Alternatively, the planetary
vehicle may be inserted into a retrograde orbit. This results in a sign change

in Q . Consequently, high-inclination orbits with relatively constant periapsis
illumination are obtained.
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From the above, it is possible to select orbit period/inclination combinations
that minimize the initial rate of change in illumination angle. However, the rate
of change of illumination angle at periapsis will change with time because the
direction of the Sun's motion, relative to Mars equator, varies with time. Because
the illumination at periapsis should be constant over the 180-day mission, best
photoimaging results would be obtained at altitudes other than periapsis. Data
were computed that enable evaluation of altitude/illumination tradeoffs.

Table 3.1-3 lists periapsis illumination angle, and periapsis latitude/time
histories for orbit inclinations of 30, 45 and 120 degrees. In addition, the time
histories of latitude and altitude for a 15-degree illumination also are given.
The data are shown for orbits that result in the least illumination angle
variations during a 180-day mission. The data indicate that retrograde orbits of
about 120 degrees have near-constant illumination angles at periapsis throughout
the mission. They would appear to be the best choice from illumination consider-
ations. However, retrograde orbits are difficult to obtain because of apsidal
rotation requirements at insertion. Their required apsidal rotations of approxi-
mately 85 degrees raise the insertion AV to almost 1.9 km/sec for an April 4, 1974,
arrival date. This exceeds the AV capability allocated to the orbit insertion
propulsion system (~1.6 km/sec) by a significant amount.

Aside from illumination, a primary factor in the selection of orbit inclination
is planet coverage. A high orbit inclination is desirable as it provides
coverage over a wide latitude band. Here again the 120-degree retrograde orbit,
i.e., a 60~degree inclination, appears to be superior to the other three orbits
considered in Table 3.1-3. However, if the latitude band for which the 11lumi-
nation angle is favorable is considered, the 45-degree inclination orbit is
superior.

As indicated earlier, the solar occultation constraint may rule out orbits that
are favorable on the basis of photoimaging considerations. Figure 3.1-15
indicates the maximum solar occultation encountered during the 180-day orbit
mission for four orhit inclinations as a function of orbit period. The maximum
possible occultation for a given orbit size also is shown. This maximum occurs
when the Sun-Mars line is in the plane of the orbit, and the Sun is along the
line of apsides toward apoapsis.

3.1.3.3 Orbit Insertion Considerations

To enter into an elliptic orbit around Mars, an insertion maneuver is required.
This insertion maneuver provides the required AV to establish an orbit and
reorients periapsis to achieve the illumination desired for imaging. The angle
through which periapsis is reoriented is termed apsidal rotation (8).

Figure 3.1-16 illustrates the orbit insertion geometry. The apsidal line of the
orbit is selected to satisfy mission and system requirements, e.g., photoimaging.
The approach asymptote, S, depends on the selected heliocentric transfer
trajectory. The position of the approach asymptote relative to Mars can be
adjusted, but its direction relative to Mars is fixed.

For a specified approach asymptote, there are two locations for insertion into

the elliptical orbit about Mars. The two locations will require different velocity
increments (AV). As the aiming point is moved further away from Mars, the Av
requirements approach the same value, i.e., the two locations coalesce. This
limiting case occurs when the approach hyperbola and the elliptical orbit are
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Figure 3.1-16: ORBIT INSERTION GEOMETRY

tangent. The AV requirements for inserting into orbits of interest are shown in
Figure 3.1-17. Velocity increments are high for low period orbits and orbits

that require high apsidal rotation angles. Minimum AV requirements occur when

no apsidal rotations are required, i.e., insertion occurs at periapsis (of both
the hyperbola and the ellipse). The hyperbolic velocity associated with the data
in Pigure 3.1-17 (VHP = 2.5 km/sec) is typical for arrivals in early April of 197L.

Apsidal rotation angle requirements to place the periapsis of the baseline Mars
orbit 15 degrees sbove the evening terminator are shown in Figure 3.1-18.
Apsidal rotation requirements vary from -10 to +4O degrees over the trajectory
design envelope for the 1973 mission. These apsidal rotation angles and the
attendant approach velocities can be translated into the orbit insertion AV
requirements indicated by Figure 3.1-19. The data are for the baseline orbit of
500 km periapsis altitude and 18,500 km apoapsis altitude. As can be inferred
from Figure 3.1-19, the allocated orbit insertion AV of 1.59 km/sec is adequate
for attaining the baseline orbit for all arrival-date/launch-date combinations
within the trajectory design envelope.

3.1.3.4 Baseline Orbit Assessment

An assessment of the baseline orbit, which was selected as a guide for the space-
craft definition effort, led to the following conclusions and recommendations.

1) The baseline orbit satisfies the planetary quarantine requirement.
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2) The baseline orbit satisfies the Sun occultation constraint.

3) The baseline orbit satisfies the Earth occultation experiment requirements
in the early and middle phases of the orbital mission.

L) The baseline orbit provides adequate latitude coverage, wave-of-darkening
coverage and periapsis or near-periapsis illumination, for conducting the
photoimaging experiment.

5) The allocated orbit insertion AV of 1.59 km/sec is adequate for inserting
into the baseline orbit, including apsidal rotation for 15-degree illumination

at periapsis, for all launch-date/arrival-date combinations within the
trajectory design envelope.

6) The orbit trim AV allocation of 150 meters/sec is adequate for March/April
arrival dates. An additional trim AV allocation of 60 m/sec is required to
accommodate early (February) arrival dates.

7) Alternate orbits that might better satisfy the photoimaging experiment
objectives should be examined.

3.1.4 Earth-Mars Trajectories - 1973

For each of the Earth-Mars mission opportunities (roughly every 25 months), there
exists a family of Earth~to-Mars trajectories. Each launch-date/arrival-date
combination defines such a trajectory. Trajectory parameters for the 1973 mission
are plotted on Figure 3.1-20. The trajectories are divided into two categories,
designated Type I and Type II, according to whether the heliocentric trajectory
subtends a central angle at the Sun of less or more than 180 degrees. Because
Type I trajectories (subtended central angles less than 180 degrees) have shorter
trip times and communication distances, Type I trajectories are preferred for the
1973 mission design. Their launch and insertion energy requirements can be met
with current weight allocations.

To assess the capability of the system to perform a mission, its weight, propulsion
capability, launch period, and launch range restrictions must be considered.
Table 3.1-4 presents the weight allocations for the two 1973 mission cases.

The first important constraint to consider in evaluating a transfer trajectory
is booster capability. Figure 3.1-21 presents the Saturn V payload capability
versus the geocentric launch energy, C3. As indicated, the highest C3 that the
Saturn V booster can provide for the Case A and Case B system weights is 33
and 28.8 km2/sec?, respectively.

The spacecraft's propulsion subsystem capability sets another constraint on inter-
planetary transfer trajectory selection. The highest hyperbolic excess velocity
(V._.) that can be acconmodated is directly related to the AV allocation of the
spggecraft. A total AV capability of 1950 m/sec was allocated to each planetary
vehicle. Deducting 210 m/sec for midcourse and arrival time biasing maneuvers,

and 150 m/sec for orbit trim, leaves a AV of 1590 m/sec available for insertion.

To insert the planetary vehicle into the design orbit with an apsidal rotation of
$20 degrees (a conservative assumption for early arrival), the maximum value of Vyp
that can be accommodated is 3.4 km/sec (a 40 m/sec reserve A V was assumed).
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Table 3.1-4 : 1973 VOYAGER SYSTEM WEIGHT ALLOCATION (pounds)

CASE A CASE B
Total Planetary Vehicle 20750 22750
Total Dry Spacecraft 5650 5800
Propulsion subsystem inerts (2050) (2100)
Spacecraft (2940) (3030)
Science ( 390) ( 390)
Contingency ( 270) ( 280)
Usable Propellants 10100 10950
Capsule 5000 6000
Planetary Vehicle Adapter Allowance : 250 250
Total per Planetary Vehicle 21000 23000
Mission Contingency 5000 5000
Total Net Payload per Launch 47000 51000

75 ¢~

0

(2] ot

PAYLOAD
(1000 Ib)

51—

1973 MISSION

115° Launch Azimuth

- CASE 8 WEIGHTS

50—

1973 MISSION

- CASE A WEIGHTS \

S

i

L 1 ) |

0

VIS-VIVA ENERGY, C tkm?/sec

15 20 25 30
)

Figure 3.1-21: VOYAGER PAYLOAD VS. Cq FOR SATURN V
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The launch azimuth restrictions of the Eastern Test Range (ETR) impose an
additional constraint. Figure 3.1-22 shows the relationship of launch azimuth,
launch window, and declination of the launch asymptote (DLA). Launch azimuth
values between 90 and 115 degrees were specified for the 1973 launch opportunity.
To provide a 2-hour per day launch window, it is necessary to provide DLA's
(departure) below 36 degrees.

The system capability envelope (see Figure 3.1-20) is completed by the latest
arrival date constraint which results from the requirement of a minimum reasonable
launch period of 20 days.

The combination of the above capabllity constraints allows the construction of
the 1973 mission trajectory envelope bounded by a C3 of 33 km2/sec2 on the right
(Case A weights), a DLA limit of 36 degrees on the left, a Vgp value of 3.4 km/sec
on the bottom, and a 20-day launch period on the top. This envelope encompasses
the launch date, arrival date, and energy capabilities of the Voyager system. The
heavy dashed line on the right side of the envelope represents the capability
limit (C3 = 28.8 km?/sec?) for Case B weights. For the latter case, the available
launch period for the April 13 arrival date is reduced to 16 days. Thus, for

Case B, the latest arrival date allowed is April 2. Figure 3.1-23 presents

detailed 1973 interplanetary trajectory energy parsmeters within the capabllity
envelope.

3.1.4.1 Aiming Point Selection Criteria

By combining the features of the baseline orbit with the trajectory capability
envelope, aim point selection can be made. The approach aiming coordinates are
defined in Figure 3.1-24. The position of Sun and Earth with respect to the

To Sun

Definitions : S~

S $-Vector is the direction of the approach hyperbola
asymptote at Mars arrival .

T Orthogonal to S, and lying in the ecliptic plane.
R Forms a right handed orthogonal system with S, T.
ZAP Angle between S and vector to Sun

ZAE Angle between S and vector to Eorth.

ETS  Angle meosured in R-T plane from T 1o the negative
projection of the Sun vector.

ETE  Angle measured in R-T plane from T to the negative
projection of the Eorth vector.

To Eorth

Figure 3.1-24: SUN-EARTH-SPACECRAFT GEOMETRY AT MARS ARRIVAL
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approach-aiming-coordinate system is indicated. This coordinate system is based
on the direction of the approach hyperbolic asymptote, given by S, and the T axis.
T is normal to S and parallel to the ecliptic plane. The third coordinate axis,
R, is determined from R x S = T. An aiming point is the point at which the
asymptote of the approach hyperbola passes through the RT plane. The Sun angular
coordinates, ZAP and ETS, are plotted in Figure 3.1-25 for the launch and arrival
dates of interest. (See Figure 3.1-2L4 for definitions.) Similar coordinates

for the Earth, ZAE and ETE, are shown in Figure 3.1-26.

Figure 3.1-25 indicates that all direct orbits will be free from solar occultation
during the insertion phase. In addition, the ZAP angles are such that periapsis
of the approach hyperbola will occur near the evening terminator. This will
result in low AV's to achieve a Mars orbit, and good illumination for topographic
imagery. Figure 3.1-26 shows that Earth occultation geometry is more favorable
for the later arrival dates and direct orbits. When the ZAE angle approaches

180 degrees, as is the case for early arrival trajectories, occultation at insertion
is likely for many aiming points. In such a case, detailed occultation plots,
such as shown in Figures 3.1-27, 3.1-28, and 3.1-29, are required. These figures
show the available sector of B vectors (aiming vector in the RT plane from the
center of Mars to the approach asymptote) that do not result in Earth occultation
at orbit insertion. The available B vector sector grows steadily larger the

later the arrival date. The size of the available sector is directly trans-
latable into orbit inclinations as indicated in Figures 3.1-27, 3.1-28, and 3.1-29.

Figure 3.1-30 indicates the latitude of the vertical impact (LVI) point, the Mars
latitude of impact for an aspproach trajectory aimed at the center of Mars. The
inclination of the desired Mars orbit must be greater than the latitude of the
vertical impact point if a plane change maneuver at insertion is to be avoided.
All launch and arrival date combinations during the 1973 opportunity have low
LVI values. Consequently, the LVI does not influence the selection of launch
and arrival dates in 1973.

3.1.4.2 Selection of Aiming Point - 1973
Aim points for the trans-Mars trajectory are selected:

1) To meximize the probability that the trans-Mars trajectory will have the
required encounter conditions.

2) To mmintain the probability of contemination of Mars below the allocation.

Because of the contamination (planetary quarantine) constraint, and navigation
and control errors, the aim points for injection from Earth orbit and for each
midcourse correction are different, and require separate solutions. The allocated
probabi%ity of contaminating Mars by accidental planetary vehicle impact is

1 x 10 7 or less. To satisfy this allocation, aiming points must be selected so
that the probability of spacecraft impact from trans-Mars trajectory will be less
than 2 x 10-6 (see Figure 3.1-2).

The selection of the aiming points for the 1973 mission is discussed below. The
nomenclature for aiming point analysis is indicated in Figure 3.1-31,
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® LAUNCH AUGUST 25, 1973
® ARRIVAL Vp =2.41 km/sec
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Figure 3.1-29:  EARTH OCCULTATION AT ARRIVAL, ARRIL 4, 1974
LATE ARRIVAL
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¢

i, -5, T Coordinate System:

T - Direction of asymptote of hyperbolic trajectory, approaching
Mars.

T - Nomal to § and in the plane of the ecliptic.
T - Directed so that R, S, T is a right-hand triad.

B - A vector in the R, T plone directed from the planet center
normal to the approach asymptote .

B - Magnitude of B
# - Direction of B
O x, Oy - Standard deviations of the dispersion of B,

® - Orientation of dispersion of B.

Figure 3.1-31: NOMENCLATURE FOR AIMING POINT ANALYSIS

Final Aim Point Selection -- After a particular launch and arrival date combination
has been selected, the S vector is uniquely defined at Mars. It remains to pick
a B vector in order to define the desired final aiming point. The selection of a
B vector is determined (for coplanar insertion) by the intended baseline orbit,
and the desire to minimize insertion AV. The intended elliptic orbit periapsis
at 500-km altitude establishes a lower limit for the periapsis altitude of the
approach’ hyperbolic path. It is necessary to verify that this limit is acceptable
from planetary quarantine consideration. This is accomplished as follows: First,
the resultant magnitude of the B vector is calculated; the most adverse value of
the direction of the B vector is then selected, and the trajectory aimed at that
point; the Mgrs impact probability for this aim point must be shown to be less
than 2 x 10~° for that B vector to be acceptable.

The magnitude of the B vector is computed by taking the minimum allowable periapsis
altitude of 500 km and combining it with the hyperbolic approach speed for the
selected launch-date arrival-date combination. A value of the aim angle @ is

now selected (see Figure 3.1-31) so that the B vector is located in the most adverse
geometric relation to the arrival dispersion ellipses resulting from injection
into the trans-Mars orbit. The final aiming point may be placed anywhere in the

RT plane, subject to the two constraints expressed as definite integrals in

Figure 3.1-32,! The small black circle in Figure 3.1-32 represents the area on

the RT plane that encloses all Mars encounter trajectories that the spacecraft
guidance and control subsystem can convert into acceptable elliptic orbits

around Mars; the black circle, therefore, represents the correct encounter con-
ditions. The first integral relation on Figure 3.1-32 maximizes the probability
of correct encounter conditions. The second integral relation ensures that the
contamination probability allocation is met.

N _4d1
LA i |




Dispersion
ellipses of

constant value of
bivariate probability
density function, F

@ Required: IFdA to be a maximum
e

@ Required: SFdA to be €2 x 10”

Figure 3.1-32:

D2-115002-2 ’

B Vector
Magnitude

Collision Cross
Section of Mars

Most critical \
location of \
final aiming point

Direction of major
axis of dispersion
ellipses

6
©

SELECTION OF MOST CRITICAL LOCATION OF FINAL AIM POINT

3-42

1




4

D2-115002-2

The geometry of Figure 3.1-32 indicates that the most critical value of the orien-
tation @ of the B vector occurs when 0 - ¢, where ¢ is the angle between the
major axis of the dispersion ellipse and the T axis. This geometry is most
critical because it maximizes the shift required to move the initial aiming point
to the final aim point on the RT plane.

Following the above procedure, the’specific final aiming points selected for the
baseline orbit are shown in Table 3.1-5.

Table 3.1-5: Baseline Orbit Final Aim Points

Early Middle Late
Trajectory Trajectory Trajectory
Arrival Arrival Arrival
Date Date Date
Launch date 8-h-73 8-17-73 8-25-73
Arrival date 2=h7h 3-1-7k Lha7h
Radius (km) of 6,600 7,500 8,000
collision cross
section
Location of final 7090 8160 9160
aim point B (km)
B.T (km) 5,773 2)90)"’ 1)839
B.R (xm) -4,133 -7,605 8,960
0 (deg) -35.6 -69.1 78.4

Initial Aiming Point Selection -- The initial aiming point is that used for inject-
ing from Earth parking orbit into the trans-Mars trajectory. Following shutdown
of the SIVB stage second burn, the following objects are all traveling toward Mars
along nearly identical ballistic trajectories: Two planetary vehicles; the spent
SIVB stage; the cylindrical section of the aft shroud; and minor particles ejected
during the separation maneuver. All these must be considered in selecting the
initial aim point. The aim point selection problem will be solved first for a
single spacecraft. Then the effects of the additional traveling bodies will be
examined.

The selection of the initial aim point requires a representative convariance
matrix of shutdown errors for the SIVB stage of the Saturn V. This matrix is
rotated into the proper coordinates for each nominal interplanetary trajectory,
and mapped to Mars encounter. This process results in the encounter dispersion
parameters in Table 3.1-6.
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Table 3.1-6: Errors at Mars Encounter

Early Middle Late
Arrival Arrival Arrival
Date Date Date
0 x (km) 281,500 220,000 269,000
oy (km) 4,920 7,260 9,020
¢ (deg) -35.6 -69.1 78.4

By following the rationale indicated in Figure 3.1-32, and solving the integral
equation /‘ FdA = 2 x 10 ~, the results shown in Figure 3.1-33 are obtained.
o

LOCATION OF INITIAL AlIM POINT

3 M L
EARLY MID LATE
ARRIVAL ARRIVAL ARRIVAL
(Feb) (Mar) (Apr)
B (Km) 25,000 35,000 41,700
8- T (Km) +19,700 + 34,700 - 38,100 N
8- R (Km) +15,300 + 4,500 +17,100
Collision

Cross Section

m

+ + + > 1
10,000 20,000 30,000
o M

fnitial Aim Points

+ 30,000

Y
Figure 3.1-33: SELECTION OF INITIAL AIM POINT
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Aim Point Selection for First Midcourse Correction -~ The purpose of the first
midcourse trajectory correction is:

1) To separate Mars encounter arrival time by U4 days for each of the two
planetary vehicles (i.e., 4 days for one and -4 days for the other).

2) To correct random errors in B.T and B.R.

3) To shift the aiming point in the RT plane closer to Mars because error
ellipses are now smaller and less eccentric.

The following assumptions were made in selecting the aim point for the first
midcourse:

1) The probability of success of a second midcourse maneuver is 0.99k.

2) The aim point must be located to satisfy a probability of impact of
33.3 x 10-Lk, (This is a consequence of the first assumption.)

3) The selected spacecraft (conservative) control error set for all trajectory
corrections (excluding engine errors) is as follows:

Error 3 ¢ Value
Pointing 42 milliradians
AV Proportional 1.0%

AV Resolution 0.02 m/second

L) The nominal times for midcourse corrections are chosen, on the basis of
past studies, as follows: first midcourse at launch plus 5 days; second
midcourse at launch plus 25 days; and third midcourse at Mars encounter
minus 40 days.

The selection of the first midcourse aiming point is accomplished by:

1) Determining navigation errors;

2) Mapping injection error to maneuver time;

3) Computing guidance coefficients;

4)  Computing covariance of AV, the AV for arrival time bias, and nominal
aim point shift;

5) Computing error in state due to control errors;
6) Mapping navigational and control errors into encounter parameter, errors;

7) Determining a first midcourse aim point, from the encounter dispersion,
that satisfies the quarantine constraint;
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8) Iterating the above process until changes in dispersion ellipses and aiming
point become acceptably small.

Resulting first midcourse aiming points for the early, middle, and late trajectories
are illustrated in Figure 3.1-3k.

Early Middle Late
Arrival Arrival Arrival
(Feb) (Mar) (Apr)
Final Aim Point Aim Point For
A" First Midcourse
Final Aim Point _-®
30,000 Km —~~ 730,000 Km 30,000 Km
N J=-—"e o
AN Initial 7O /’/ %Finol Aim Point
AN Initial Aim Point nitial P
\{ Aim Point - /’
/
30,000 Km$  Aim Point For 30,000 Km |- f 30,000 Km|-
‘L First Midcourse 4 Aim Point for }
First Midcourse

R R
Figure 3.1-34: EFFECTS OF ARRIVAL DATE ON AIM POINT SELECTION

Figure 3.1-34 shows that the length of the B vector to the aiming point for the
first midcourse maneuver is nearly the same as the length of the B vector to the
initial aiming point. This is caused by the 4-day arrival date separation maneuver
which is combined with the first midcourse maneuver. This arrival date biasing
requires a AV (see Figure 3.1-35) of from 3 to 10 times the size of the AV
required to null randam trajectory errors. As a result, control errors are sig-
nificant., The selection of better control accuracy than that assumed here will
reduce the magnitude of the B vector for the first midcourse aiming point.

The accomplishment of the full 8 days of arrival date biasing by maneuvering only
one of the planetary vehicles is not favored because of the large amount of propel-
lant required, and the consequent increase in encounter errors. The AV require-
ment is almost double that shown in Figure 3.1-35.

Aiming Point Selection for Second Midcourse Maneuver -~ The purpose of the second
trajectory correction maneuver is:

1) To correct random errors in the B vector components in the aim plane, i.e., in
in B.T and B.R.

2) To shift the aiming point closer to Mars to capitalize on the reduction in
size of the error ellipse.

For selecting the second midcourse maneuver aiming point, the probabilities of
success of the third midcourse correction were assumed to be as follows:

Early trajectory 0.964

Middle trajectory 0.961

Late trajectory 0.954
3-46




D2-115002-2

23

13+

>
T

13

24}
Mar

14 }+

22+
Feb

UNBIASED ARRIVAL DATE (1974)

23
Jan

24
Dec

14}

AV Required for arrival time biasing (m/sec)

4 Day Early Arrival Midcourse at 5-Days

—===4Day Late Arrival

SO o
O S
! /

(4
/ ’
/

-~
\\
-~

] | ] | ] ] ] ] 1 L

28

17
Jun

27 7 17 27 6 16 26 5 15 25 5
Jul Aug Sept Oct

LAUNCH DATE (1973)

Figure 3.1- 35: [IMPLICATIONS OF ARRIVAL-TIME-BIASING AV

ON ARRIVAL DATE — 4-DAY BIAS

w
'S
*



D2-115002-2 ’

The preceding probabilities reflect the variation in trip times. From these
maneuver success probabilities, the aiming points for the second midcourse
correction must satisfy the following impact probabilities:

Early trajectory 5.59 x 1077
Middle trajectory 5.09 x :LO-5
Late trajectory 4.30 x 1077

Aim points were determined in the same manner as described for first midcourse.
They are summarized in Table 3.1-7

Table 3.1-7:  AIM POINT SUMMARY

LAUNCH | MANEUVER B.T B.R 6 ¢ O x Oy
DATE (km) (km) (degi (deg) (km) (km)
8/4/73 Injection 19,712 | 15,337 54.4 -35.6 281,460 | 4,918
Ist M.C 25,676 | 21,619 -35.6 =37.7 16,909 | 8,918
2nd M.C 7,691 | -5,506 | -35.6 ~-49.7 762 390
3rd M.C. 5,773 | -4,133 | -35.6 -78.9 103 102
8/17/73 |Injection 34,734 4,549 20.9 -69.1 220,000 | 7,263
Ist M.C 31,323 | -10,392 | -69.1 84.4 17,934 | 8,364
2nd M.C 3,563 | - 9,332 | -69.1 74.5 810 245
3rd M.C 2,904 | - 7,605 -69 .1 68.8 104 101
8/25/73 | Injection -38,005 | 17,149 168.5 78.4 268,826 | 9,024
Ist M.C -25,016 24,341 78.4 60.2 45,913 | 9,637
2nd M.C 2,767 | 13,481 78.4 55.3 1,708 267
3rd M.C 1,839 8,960 78.4 54.2 108 101

Aiming Point Selection for Third Midcourse Maneuver -- The purpose of the third

midcourse maneuver is to correct random errors in B.T and B.R., and to shift the
aiming point.

The aiming point for the third midcourse correction must satisfy a probability of
impact of 2 x 107©. Aiming points were determined in the same manner as the previous
maneuvers, and are also detailed in Table 3.1-T.

Aiming Point Selection Summary -- Guidance aiming points and dispersion data for the
trans-Mars trajectories for the three representative trajectories chosen from the
1973 launch opportunity are given in Table 3.1-7.

By comparing Tables 3.1-T7 and 3.1-5, the aiming points for the third mid-course
maneuvers are identical with the final aiming points required to attain the base-
line orbit. This establishes the fact that the trans-Mars trajectory can be aimed
to achleve a hyperbolic periapsis altitude of 500 km at Mars, while observing the
planetary quarantine constraint and using the postulated control accuracies.
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The preceding analysis was based on a single planetary vehicle approaching Mars.
The effect of the presence of another planetary vehicle, a shroud cylinder, the
spent S-IVB, and separation ejecta must be considered. These items affect

only the selection of the initial aiming point. There is a finite probability
that both spacecraft will fail to make midcourse maneuvers and hence will both
arrive at the RT plane simultaneously. This probability is small, however, and
has a negligible effect on aiming point selection. Therefore, it will be
assumed hereafter that only one planetary vehicle will approach Mars at a given
time. The shroud cylinder and the spent S.IVB, however, will accompany the
reference planetary vehicle to Mars encounter. Calculations have been made of
the trans-Mars trajectories of the planetary vehicle, the S.IVB stage, and the
shroud cylinder. Differences in accelerations due to solar radiation pressure
have been included in the calculations. The mean positions of the two extraneous
bodies (i.e., S-IVB stage and shroud) are very close to the major axis of

the dispersion ellipses of the planetary vehicle (a few thousands of kilometers).
Dispersions of the planetary vehicle about its mean position will be accompanied
by corresponding and almost identical dispersions of the other vehicles about
their mean locations. Consequently, it is possible to select aiming points on
the RT plane in such a way that the presence of the spent S-IVB stage and

the cylinder will have only an insignificant effect on the probability of
contaminating the planet. The presence of the separation ejecta complicates

the problem. However, a relatively large AV is applied in the first midcourse
correction in order to achieve aiming point biasing. Consequently, a relocation
of the initial aiming point in order to accommodate the ejecta will result in
only a small additional velocity increment. The increase in the subsequent
errors due to control inaccuracies will therefore be small.

The previous analysis ignored the lower bound on the AV impulse magnitude which
can be used at the second and third midcourse maneuvers. A realistic minimum
impulse bit could be readily accommodated by biasing the aiming point of the
third midcourse sufficiently to require a third midcourse maneuver in excess

of 1 m/sec.

In conclusion, three midcourse maneuvers are adequate to permit final targeting

directly to the baseline Mars orbit without violating the contamination constraint.

The maneuvers are timed approximately at 5 days and 25 days from injection, and
40 days prior to encounter {(this timing, however, is not critical).

3.1.5 Attitude and Velocity Control Accuracies

The preceding aiming point analysis depends on the accuracy with which the
planetary vehicle's maneuvers can be controlled. Three different levels of
accuracy for the attitude and velocity control were examined to assess trajectory
sensitivity and establish required spacecraft capability. One of these was then
selected for use in the aiming point analysis above.

Models were developed that describe expected maneuver control errors for guidance
and control systems ranging from an easily achieved system to one that requires a
more sophisticated design. Present state-of-the-art technology and equipment
were used for each design. The performance of each system was then evaluated in
terms of resultant errors in the orbital elements of the spacecraft orbit around
Mars.
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The following equipment characteristics were considered:
Point Error

° Gyro drift rate

(] Gyro misalignment
° Vehicle limit-cycle magnitude
° Sun and Canopus sensor accuracies

° Switching amplifier null offsets

° Gyro converted-rate quantization error

® Gyro rate voltage/frequency converter error
) Gyro scale factor error

° Thrust vector control error

Av Magnitude Error

° Accelerometer scale factor error
) Accelerometer null offset
[ Accelerometer integration resolution

° Engine tailoff uncertalnty

The effective pointing accuracy of the control systems considered ranged from 6 to

14 milliradians, 10, as indicated on the attached trade study summary sheet,

Table 3.1-8. The AV magnitude uncertainty, which is proportional to AV, ranged
from approximately 0.004 to 0.04%, 1 o. In the AV magnitude error, which is not
proportional to A V and ranged from approximately 0.0l m/sec to 0.1 m/sec, the en-
gine cutoff accuracy was not considered a variable. Instead, the 3 0 lunar module
descent engine shutdown accuracy was used. The variation in the A V magnitude error,
theretore, is due to varying vehicle weight during the mission and the (assumed)
different thrust levels for the propulsion maneuvers, i.e., insertion, mid-

course correction, and orbit trim.

Navigational accuracies for midcourse corrections were determined using an

orbit determination program. DSN range and range-rate data were considered. The
principal a priori error for this phase was due to uncertainty in the Mars
ephemeris and unpredictable trajectory perturbations during cruise. The position
uncertainty due to these effects is estimated at 100 km, 1 0. For the orbital
phase, a simulation was used to estimate the orbit determination accuracy. The
arrival dates were analyzed and the results are summarized in Figures 3.1-36
through 3.1-38. These results are discussed below.

3-50




) Euﬁx»m
ajousalyy . .
(D £) UOHIFSUL 41QI0 40 D3s=G] 0P PUD ‘Wil §1040 PUD ITINOIPIW O
HOYOud Y 295-q) [Z SO UMDY S1 YD iym ‘A4uiouadun yoyna aubus Buipn|dul ioN,
Q3153138 yo41d 10 moA 533469p 0g| i
|10 s33482p Gy :
9.0 SI3ANPUDW IPNILLY ®
wx 00| = 10442 suFWayda siow @
SI2ANUOW 3SINOIPIW 32iy| ®
:SNOILIWNSSY
yimoub 104 4502 802
WooJ S0 24 159403)
il 1040913 10219 *NOD
4502 y4moiB 1oy Yimoub 104 CPJDI|I UYL 31 UOISSIW Ay 4O
samo] WoOoI oW woou oW sjuswasinbal A301n330 duopind Ay siPaw
n/_h aunudionb auyupionb auyuoionb 111s dou waisAs u_nMEotu xm:uuo MSE oul
! ! ¢ “usny uy wayshs yo0a Buisn A20:n0350
N Aipjaup|d o4 Asojauo|d 1oy Aioeup|d Jo4 22ucp NG 2y4 21BN |DAD O} 5t dais IXBU Y|
w sjudwasnbay sjuawasInbay sjuawaiinbey .x::u_.t_v yitm 3|qoUIBHD vcc "uiono 04
el S3 1451405 $3148140¢ $dYysueg 4N2141p 004 jou ‘3|qouD D A (1503 Buiaq o
p— R ss95ns 5539908 Ajaati>9dsa. papiobas 3io v puo ‘g ‘D swasAg
— e o wors 0 “4D Yy §O B4DYS JUBLIND Y Ui 1M I]OAD YO0
1 . :Mocwn‘_._,nﬂu* ! ._Mcow Srooon, :.uo* Butaq so papioBal ||0 340 Yo 1ym A3041330
N 4 ! -] UL d b ! ] 4O S[@Ad| 3.y} Juasaiday SWasAs (050D F5IYL
() fad P $31ysoS $aYysog 10¥d {3 puo ‘g ‘) swaisAs [014UOD JuBIBYIp FIIs
10 22uasIxd Ay 3o nysod o4 5 y2cosddo ay|
D wayshg g WaysAg v waisds D9 ‘@ ‘v swaishs Bunn uoisiw 1aBohos * pasgnbas A3040330 12ANIUDW Y4 Ul
oWy jpuUR Y puUIdY §0 £304n230 25uppinb jo s1sk|ouc jo 4| ntay §[NSBI [ 1m YD 1ym Wdyshs |04u0d A§120]2A PUD
9pN4IHO Y4 UO siudwalinbas Juabuiis s03)
s i T & e e {21 o R o
» !
e 20° slo (o£) — . .u:tco;u:cmnnw_o.o:o_nmm:_E_o_\,
o z0° 00" {o1) oL snoyim 5006 d1414ud13s 5, 136040 A ayy Buinaydo
4iuad |jim 44 41guo uo oju papind aq
00° 1 05" 10’ (0€) I2ydA Ainjaunyd dyi oy uots1daad jud
£’ L £0° (o1) asunodpiw ‘juadied ‘ [ouotisadald _ AY Y pays1idwoad0 3G ISNW SI2ANIUCW 35AY |
v yx4 8l (0€)
ri é 9 (o) sup1pos || 1w ‘sou] Buluad ‘Wi HQuo (g) puo “o_tﬁcm @)
‘asunodpiw () :s49anduow Buimo||cy Ay
Aso3 1103 1331p 004 JON Jnoua 110 Y} JO 4BIs UMM AL1[IGOUIOHY ys1|dwo330 ysnw 313143 Auosaunyd 1aBokop 3y)
D washs q woyshg v wasshg $40413 [014u0T) A4150(2 04144 SINIWI¥INOIY NDISZA
oWy 2jousdi|y 2jouldy )y 3 2 FHIIRA § FOLNY IvDINHDIL ANY TYNOILINNY
NOIL13313S HOVOUWdY NOISIQ 40 Xidlwvw 133HS AFVWWAS
TOTLNOD ALISOTIA ¥ JANLILLY 40 ADVANDOV NOdN SINIWTAINDIY IONVAIND  J1LIL T $3EWON AQNLS 3QVAL | INIWININDIY 4O 35¥NOS AQNLS 30vAL

SLNIWNINODIY TOILNOD ALIDOTIA ® 3ANLILLY -

=1°€ °|9°L

10
]
o)



30 ENCOUNTER ERROR, km (R-T Plane)

350

300

»
N
?5{
325} RS
S

0 V5 10

10 POINTING ERROR (Milliradians)

TOTAL MIDCOURSE AV (M/Sec)

Figure 3.1- 36:

10

100§~

80—

0

D2-115002-2
100 —
L2
8 90— aoe
o
0)
& —
i 80_ Eorly
=
'—
—
S
= 70|
L.
o
™
] ol;\ I i )
15 0 5 10 15

10 POINTING ERROR

\ofS

Eo\’\\/

pigde

HH

| ] |

0

5 10 15
10 POINTING ERROR

MARS ENCOUNTER ERRORS AND MIDCOURSE AV

3-52




> [ o do
8 3 - B
™
N
o
~ B4 _
w
] _ ] A“.u ] | | o dn m
™ ~ —_ o ™ ~N = o — &
(s1noH) YO¥¥I AOI¥3d OE , (sea1baq) 2
JOYY3I IAON 40 IANLIONOT OF o)
M o 2 o _pIM
& _ 5 5 T 4« 3
(@] w - s v [}
3 5 £ °
T g =
5 _ /Ml\ I%l wv
4 o ‘ ! ] ] | o M
T z m ~ ™ Y - O =
X 5> o P (sea1baQ)
® N 12 5 < . N
) 2 3l . — JO¥Y3I NOILVYNITONI O€ &5
e o o st % :
w Z s —
= 7 ™
= o
| Ms : M w
a i
. 1 1 ] o) | | ]
¥ E 8 e T R°° T oo ¢
N o (sea4Ba() YOUY3I
(W) YOu¥3 SISdvIyid O€ SISAVI¥Id 4O INIWNOYY OF

v
IR N _ o e . S greempd



v

D2-115002-2

o

+

)
>, L.nw [
P 5 I
©
—Jo = = AﬁO.I
>
) | N
S S SR N S Aru AR U B S
N o (<o) 0 <t o~ (=] e} < ™ N — o

—

(w]) YOUYYI SISdVI¥Id 9¢

~~~

1%

C

R

3

J.S.w

5 — s

A . s

fd o o

N =t O

> A lOR

[a'4

- 9o W
o o

w - )

_ Z

b

4. 2

A Jrhro

o.

b mv v = ©

= o O « 8 < —_
N N — —

(23S/W) LNIWINDIY AV WL L1940

(se=4B2Q) YOU¥3
S1SdVI¥Ad 40 LINIWNDYY P¢

|
15

e
0,
2\ >
>

PR «

|
SR o)
S8 8 3 ¥ & °

(spuooaS) YOI AOI¥3Id O¢

o

(s92169Q) YOYYI NOILYNITONI O¢

v
e 5
- —
al= -
o (g
1 1 MM.
— 0 [S)
. o
o .
o
(see4B2Q)

JOWYI IAON J0 IANLIONOT O¢

Figure 3.1-38: MARS ORBIT TRIM ERRORS AND AV REQUIREMENTS

3-54




D2-115002-2

Midcourse Corrections -- In the midcourse correction maneuver analysis, it was
found that three maneuvers were required in order to achieve reasonable encounter
accuracies and to meet the planetary quarantine constraint. The encounter
errors, after three corrections and the total A V requirements, are shown in
Figure 3.1-36 as a function of pointing accuracy and arrival date. The encounter
errors are dominated by the uncertainty in Mars ephemeris and unpredictable
trajectory perturbations; the A V requirement is dominated by the arrival time
biasing requirement. In all cases, the effect of the A V magnitude errors, which
are proportional to A V, were insignificant over the range of errors considered.
This is true also for orbit insertion and trim. Therefore, this error source
does not appear as a parameter in the plots.

Orbit Insertion -~ The post-orbit-insertion errors are summarized in Figure 3.1=-37
for the controlled variables (periapsis radius, period, argument of periapsis,

and longitude of nodes). The dominant error source here is the Mars approach
navigational uncertainty. The encounter errors, after the last midcourse
maneuver, are also significant for the orbit parameters not controlled during
insertion (i.e., inclination).

Orbit Trim ~- The post-orbit-trim errors are given in Figure 3.1-38. For this
analysis, periapsis radius, orbit period, and argument of periapsis were corrected
at the first trim maneuver. At the second trim maneuver, the periapsis radius

and period were held constant and the node was corrected. The total AV for

orbit trim is also indicated in the figure.

The post-orbit-trim accuracy was evaluated in terms of imaging system resolution
and photo mapping coverage and capsule delivery capability.

The posttrim errors were mapped into resolution uncertainty over a true anomaly
range of 30 degrees centered sbout periapsis. Over this range, the variation
in resolution due to the orbit trim errors was a maximum of 5%, 30. This
level of variation in resolution will not be noticeable.

A qualitative assessment of the effects of posttrim errors on photo mapping
capability was made. The results of this study were compared with the premission
analysis results for Lunar Orbiter IV which performed a mapping mission at the

s . . o
moon. The comparison is given below.

Voyager

Error (This Study) Lunar Orbiter IV
1 0 (periapsis radius) 3.7 (lO-h) 70 (1o'h)

periapsis radius
10 (Period) 10-u 8 (10-3)

period
10 (Argument of periapsis), deg | 1.k 2.0
10 (longitude of node), deg 0.01 0.16
10 (Inclination), deg 1.2 0.023
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The predicted Voyager accuracy compares favorably with the predicted Lunar Orbiter
IV accuracies (which were verified in flight). It is expected, therefore, that
the Voyager posttrim errors will have no detrimental effects on the design or
operation of the mapping missions.

The most significant posttrim error from the capsule delivery standpoint is the
inclination error. This result indicates that an increase in the trim AV is
required to provide for plane change capability. Posttrim errors have an
insignificant effect on the landing accuracy when compared with orbit determination
and deorbit control accuracy.

Conclusions -- The following conclusions are drawn from the above analysis:

] Trajectory orbit accuracies and trim AV are more dependent on
arrival date than on control accuracy.

° The significant orbit error sources are encounter errors due to Mars
ephemeris uncertainty and unpredictable trajectory perturbations, and
the Mars approach navigational uncertainty.

° Encounter errors, with three midcourse maneuvers can be held to less than
340 km, (3 0 in position), and approximately 90 seconds (30 in flight time).

° Midcourse A V requirements, including arrival time and aiming point biasing
requirements, are less than 210 m/sec.

° Orbit trim AV requirement is 210 m/sec maximum.
° Posttrim errors do not present a problem for imaging resolution or photo
mapping.

Based on the above results and conclusions, the Alternate System C maneuver
accuracy requirements (see Table 3.1-8) are satisfactory. These are:

Error 30 Value
Pointing 42 milliradians
A V Proportional 0.1%

A V Resolution 0.02 m/sec

(excluding engine)

3.1.6 Mars Launch Opportunities in 1975, 1977, and 1979

Changes in the relative positions of Earth and Mars result in different require-
ments for transfer trajectories for the different launch opportunities. These
requirements are indicated by a trajectory design chart for each opportunity.
Figures 3.1-39 through '3.1-41 show the trajectory design envelopes for Type I
trajectories in 1975, 1977, and 1979. The envelopes are based on constraints
similar to those applied in 1973. The Sl-degree DLA limit in 1975 and 1977
corresponds to a minimum launch azimuth of 45 degrees. In 1979, the maximum
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allowable DLA has been set at 36 degrees, which corresponds to a launch azimuth
of 115 degrees. Higher approach velocities, V., are possible in the later
launch opportunities because of a reduced midcourse A V allocation for arrival
time biasing. This leaves more of the total AV budget of 1.95 km/sec available
for orbit insertion. The target orbit, for the purpose of computing insertion
AV requirements, and, hence, an allowable approach V., is the 1973 baseline
orbit (500 by 18,500 km, 12.lk-hour orbit with a *20 degree apsidal rotation).
The target orbit is selected for the purpose of defining the range of available
trajectories in these opportunities.

Comparison of the 1975, 1977, and 1979 opportunities to 1973 reveal that
considerably smaller launch and arrival date regions exist for Type I trajectories.
The maximum available launch periods are reduced to about half of those avail-~
able in 1973. The choice of arrival dates has been similarly reduced.
Communication distances at arrival, and interplanetary trip times, are similar to
those available in 1973.

Type I missions in the 1975 and 1977 opportunities are difficult to perform. The
C, and V. requirements within the design envelopes are much higher than in

1973. For a given desired launch period, the maximum payload capability of the
booster will be reduced because of higher C, requirements and more northerly
launch azimuths. Tables 3.1-9 and 3.1-10 sémmarize weight allocations for two
specified cases. Case A, with a 5000-pound capsule, provides more C capability
and is indicated by the shaded limit in Figures 3.1-39, -40, and -417 Case B,
which has a TOOO-pound capsule in the 1975 through 1979 time period, imposes a
more severe constraint on the available launch periods, as indicated by the

heavy dashed line. Launch period relief is obtained by selecting Type II
trajectories during the 1975 to 1977 launch periods. The Type II trajectory
design charts are shown in Figures 3.1-42 and -43. Type II trajectories in

1975 and 1977 may be performed within the 90- to 115-degree launch azimuth range,
allowing greater C3 capabilities.

3.2 LAUNCH DELAY STUDY

3.2.1 Purpose

The purpose of this study was to define alternate missions that might be
implemented if the scheduled 1973 launch slides beyond the full-capability
launch window.

3.2.2 Scope

This study established a series of alternate Mars interplanetary trajectories
and Mars orbital missions that provide launch window extensions. To provide
this launch window extension, the payloads and mission profiles of the alternate

missions may result in reduced system capability for meeting the mission objectives.

However, such alternate conditions would allow performance of a mission several
weeks after the full-capability launch window, instead of necessitating a 25-
month wait for the next Mars launch opportunity.
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3.2.3 Analysis and Results

The mission options considered in this study include combinations of the
following:

° One or two spacecraft
° One or no capsule
® Nominal or marginally stable orbits.

For this and the following studies, representative mission and system parameters
were used in lieu of the baseline mission/system parameters. The orbits
considered throughout this study have a periapsis altitude of 1000 km. The nominal
orbit, with a period of 13.8 hours, provides an apsidal rotation of %20 degrees

and a trim AV capability of 150 m/sec. The 60-hour (marginal) orbits have no
provision for apsidal rotation and orbit trim. The propulsion system assumed for
this study has a total AV capability of 2.12 km/sec.

The following system weights in pounds were used in this study.

Planetary Vehicle 21,700
Flight capsule 5,000
Spacecraft bus and science 2,900
Propulsion module 13,800
Inerts 2,700
1973 propellants 11,100
Full propellant capacity 13,100

Planetary Vehicle Adapter 1,500

Shroud 7,900
Jettisoned in parking orbit 4,500
Carried to trans-Mars injection 3,400

An envelope of allowable launch and Mars arrival date combinations for 1973 Type I
trajectories is shown in Figure 3.2-1. An extension of the data to higher levels
of C3 and VHp is included for use in the selection of launch dates beyond the
nominal dates.

A summary of the alternate mission conditions which are most effective in extending
the launch period is given in Table 3.2-1. Included in the table, for reference,
is the case representing the latest launch date within the nominal trajectory enve-
lope. The planetary vehicle weight listed on the table represents the lightest
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allowable weight compatible with the desired orbit and Vgp- Propellants not re-
quired for orbit insertion are offloaded prior to launch to allow for the largest
possible C3.

For a minimum trip time, the largest launch period increase is 25 days. This is

the increase associated with placing a single spacecraft without capsule into a 60-
hour Mars orbit period. A more desirable alternative is the 22-day extension ob-
tained with a single planetary vehicle placed in the 13.8-hour orbit. Additional
launch period extension is possible with longer trip times by using a Type II tra-
jectory. Type II trajectory envelope data, however, are not included in this study.

3.2.4 Conclusions
Significant conclusions from this study are:

1) For normal Type I transfer trip times, the launch period can be extended 25
days by placing a single spacecraft without the capsule into a large (marginal)
orbit.

2) A 22-day launch period extension is possible with a planetary vehicle (space-
craft and capsule) placed in a 13.8-hour orbit.

3) Additional gains of up to a total of 67 days are attainable by launching one
spacecraft, inserting it into a marginal orbit, and increasing trip time by
approximately 200 days.

3.3 MISSION ENERGY BALANCE STUDY
3.3.1 P ose

The purpose of this study was to determine the maximum attainable weight in Mars
orbit using the current launch vehicle payload capability.

3.3.2 Scope

The study was to determine the weight that could be placed in Mars orbit by balanc-
ing the performance allocation between the launch vehicle capability and the space-
craft propulsion capability. The 1973, 1975, 1977, and 1979 Mars launch opportu-
nities were examined using a SA-506 Saturn V launch vehicle. Type I trajectories
were evaluated for all launch opportunities and Type II trajectories for the 1975
and 1977 launch opportunities. The study was limited to the baseline Mars orbit
(500 by 18,600 km).

3.3.3 Analysis

For each mission there is a range of trajectory parameters that, when bounded by
various constraints, results in a trajectory design envelope as shown in Figure
3.3-1. The selection of any single point within the envelope results in a specific
set of related trajectory parameters. These are launch injection energy (c )
hyperbolic approach velocity at Mars (VHP), launch date, and arrival date. “The
trajectory parameter envelope can be subdivided into 20-, 30- and 40-day launch
period envelopes as shown in Figure 3.3-2. For any launch period and related
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arrival date, maximum C3 and V., can be determined by combining the data shown in
Figures 3.3-1 and 3.3-2. With ghese maximum values, & parametric curve can be
plotted as shown in Figure 3.3-3. This curve relates maximum C, and V., for a
given arrival date and a specified launch period. Using the daéa fromH%his curve,
the maximum weight in orbit was determined for each arrival date and launch period.
Maximum weight-in-Mars-orbit curves for the 1973, 1975, 1977, and 1979 launch
opportunities and Type I trajectories were developed as shown in Figure 3.3-h-
Similar data, developed for 1975 and 1977 launch opportunities using Type II
trajectories, are shown in Figure 3.3-5.

In Figure 3.3-6, the required planetary vehicle in-orbit weights for both Case A
and Case B weights for the 1973-1979 launch opportunities (section 2,0) are com=-
pared to the maximum in-orbit weight capability for the Type I trajectories.

For the 1975 and 1977 launch opportunities, the required weight exceeds the
capability for Case B, i.e., a TOOO-pound capsule planetary vehicle configuration.
This condition may be corrected by using (1) a Type II trajectory (with resultant
increased mission time of 38% in 1975 and 26% in 1977); (2) an uprated Saturn V;
or (3) by decreasing the project weight contingency to a maximum of 3000 and 800 p
pounds for the 1975 and 1977 launch opportunities, respectively.

3.3.4  Conclusions
Significant conclusions from the study are:

1) The planetary vehicle weight in Mars orbit is sensitive to arrival date and
launch period.

2) Significant in-orbit weight capability can be realized for 1973 arrival
dates in mid-February. The additional capability might be used to improve
reliability through further redundancy and to provide additional maneuver
capebility in Mars orbit (i.e., increased trim propellants).

3) For a common 1973-1979 spacecraft design using Type I trajectories, a
minimum launch period of 20 days, and a 5000-pound weight contingency, weight in
orbit is limited by the 1975 and 1977 missions to a maximum of 13,000 pounds.
If Type II trajectories are used for 1975 and 1977, the 1979 Type I mission
design limits the common spacecraft design to a maximum weight-in-orbit of
16,800 pounds.

3.4 ENCOUNTER COMMUNICATION DISTANCE STUDY

3.4.1  Purpose

The purpose of this study was to define trans-Mars trajectories and associated
Mars orbits attainable with the 1973 Voyager spacecraft that minimize the Earth-to-
Mars communication distance,

3.4.2  Approach
The amount of spacecraft data transmitted to Earth is limited by the amount of
Earth-received RF energy, This energy varies as the inverse square of the Earth/

spacecraft separation distance, Therefore, for maximum transmission cepability,
the mission might be planned to minimize this distance. This can be achieved by
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using early launch dates, and launch vehicle payload energy to decrease Earth-Mars
spacecraft transit time for a given launch date., This study investigated several
methods of reducing encounter communication distance by the above means.

One method investigated for communication distance reduction is the use of fully-
loaded spacecraft propellant tanks for the 1973 mission. The baseline spacecraft
design includes a propulsion system sized for the 1979 mission and offloading for
the prior missions (1973, 1975, and 1977). A second method investigated called
for mission orbital operations involving two-step orbits. For this two-step
orbital operation, the planetary vehicle is first inserted into an orbit with the
desired periapsis altitude and a 60-hour period. The capsule would then be de-
ployed and a spacecraft orbit transfer is performed to reduce the apoapsis altitude
to the required level. This study established whether energy gains in orbit in-
sertion could be realized that could then be devoted to shortening

the communication distance.

3.443 Analysis and Results

Encounter communication distance is related to launch date and Vyp at Mars as
shown in Figure 3.4-1. Using these data, communication distances were detemmined
for direct orbit insertions (Mode A) and a two-step orbit operation involving an
?rbit change maneuver from a 60-hour orbit period to the desired final orbit

Mode B).

The weights in pounds used in developing these data were:

1973 Planetary vehicle (excluding adapter) 21,740
Spacecraft bus 2,600
Spacecraft science 340
Flight capsule (650 pounds remsin 5,000
with spacecraft)
Propulsicn medule 13,800
Inerts 2,700
Propellants 11,100

(Capacity = 13,100)

Figure 3.4-2 shows a comparison of these two modes with propellant loading corres-
ponding to a 1973 mission (i.e., 11,100 pounds). Figure 3.4-3 gives a similar
comparison for a full propellant load condition (1979) flown in 1973.

The data show, for the 1973 propellant loeding, that Mode B allows a shorter
arrival communication distance for all cases considered. The reduction varies
from 6 to 1% for orbit periods from 6 to 24 hours for a 500-km periapsis altitude.
Using full propellant tanks in 1973 reduces the arrival communication distance
from 9 to 15% below the reductions attained with the 1973 propellant loading.
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In sumary, the study results are as follows:

° Greatest contribution to minimizing encounter communication distance results
from launching early in the opportunity. Early launch early arrival con-
ditions (20-dey launch opportunity) reduces Earth-Mars distances by about
35% over the latest April 2, 1974, arrival distance.

° The communication distance can be reduced as much as 6% by using an orbit
insertion mode involving orbital transfer to the desired final orbit from an
initial 60-hour orbit. The capsule must be deployed from the initial orbit

to realize the energy gain for use in reducing the encounter communication
distance.

° Loading the propellant tanks to capacity results in an additional communi-
cation distance reduction of as much as 15%.

3.5 CAPSULE-CANISTER SEPARATION TRADE
3.5.1 Purpose

The purpose of this study was to determine when in the mission sequence to separate
the capsule forward sterilization canister from the planetary vehicle.

305 2 Scope

The Mars planetary vehicle consists of a flight spacecraft and a flight capsule.
The capsule is sterilized and encapsulated before launch to avoid Mars contami-
nation. The canister is unencapsulated by jettisoning before capsule separation
from the spacecraft., This study was conducted to investigate where in the mission
sequence this canister jettisoning should be done. Study considerations included
plenetary contamination constraints and orbit insertion propellant requirements.,

3¢5¢3 Analysis and Results

Three alternate separation modes of separating the canister were examined:

10 days prior to, 1 day prior to, and X days after orbit insertion. Figure 3.5-1
presents the considerations involved for the case where the canister is separated
prior to the orbit insertion. Table 3.5-1 is a sumary of the trade analysis
that was performed, This summary describes each canister separation mode and
defines the preferred mode of canister separation.

Separation prior to orbit insertion is compatible with the planetary quarantine
constraint and will result in propellant savings. However, a requirement of
retaining the capsule in orbit for up to 30 days may develop. This would allow
sufficient time for orbital photoimaging to aid in capsule landing site selection.
Maintaining capsule thermal control for 30 days in the unencapsulated condition
may prove impossible. Consequently, it is prudent to plan on Jjettisoning the
forward capsule sterilization canister after orbit insertion and Just before
capsule release,
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after separation _/ Point
impulse to ensure
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Mars S :
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a) Aiming Point b) Trajectory

Figure 3.5-1: CANISTER/PLANETARY VEHICLE SEPARATION GEOMETRY CONSIDERATIONS '

3.6 SPACECRAFT PROPULSION ENGINE SELECTION STUDY

3.6.1  Purpose

The purpose of this study was to evaluate candidate spacecraft propulsion sub-
system engines for the 1973-1979 Voyager Mars missions.

3.6.2 Scope

To perform this evaluation, propulsion subsystem sizing parameters were developed
for each of the 1973-1979 missions. The evaluation parameters included weight,
performance, mixture ratios, reliability, and development status. Use of a common
subsystem for all four missions (1973-1979), including a common propellant tankage
configuration, was a study guideline. The engines evaluated were: (1) the Apollo
Lunar Module Descent/Engine (LMDE), (2) the Bell Aerosystems Agena Engine (Model
8517), (3) the Titan III Transtage engine, and (4) the LMDE supplemented with Thio-
kol C-1 low thrust engines.

3.6.3 Analysis

Propellant weight requirements and total payload weight capability are shown in
Figures 3.6-1 through 3.6-4 for the four candidate engine systems for the 1973
through 1979 Voyager missions. The candidate propulsion subsystem modules were
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sized to meet the most demanding requirements, which occur in 1979. Propellant
loadings required for various payloads to meet the 1973-197T7 mission requirements
were then determined. The payloads consisted of the capsule and the flight space-
eraft, including the science payload.

Propulsion module sizing was based on a constant total AV requirement of

1.95 km/sec for all four missions. A V allocations for midcourse corrections,
arrival time biasing, and orbit trim were subtracted from the AV allocation of 1.95
km/sec to obtain the orbit insertion AV.

Allowance was made for variation of inert weights as a function of propellant
requirements. Adjustments were also made for the differences in weights of the
engines considered, However, no allowance was made for variation in inert weights
as a function of engine thrust. Therefore, the weight estimates developed in this
study become less accurate as engine thrust level on the alternate engine configu~
rations deviates from that of the LMDE's high thrust,

Engine Systems -- Technical data for the engine studies were obtained from TRW
Power Systems Division (LMDE), Aerojet-General (Titan III Transtage), Bell
Aerosystems (Agena Model 8517), and Thiokol (RMD C-1).

The IMDE was considered for all AV maneuvers (in a high thrust mode of 9850 pounds
for the orbit insertion maneuver and a low thrust mode of 1050 pounds for mid-
course and orbit trim maneuvers). The LMDE was also considered for the orbit
insertion maneuver while a cluster of four C-1 engines were used for midcourse
correction and orbit trim. Because of losses due to engine throat erosion, the
specific impulse, Ig, was assumed to be 304 1bf-sec/1bm during high thrust operation,
and 288 1bf-sec/lbm during low thrust operation. From engine weight breakdowns
supplied by TRW, the engine weight was determined to be 389 pounds.

The Titan III Transtage engine was considered to operate at a fixed thrust level
(F = 8000 pounds, I = 303 1bf-sec/lbm) for all maneuvers, It nominally operates
at a mixture ratio of 2. However, the engine shows a specific impulse increase
of 6 lbf-sec/lbm when operated at a mixture ratio of 1.6. The length and

maximum diameter of the Transtage engine are smaller than the LMDE. Aerojet-
General has submitted data showing that, by changing the mixture ratio to

1.6 and increasing the nozzle expansion ratio to 53.5 to match the geometric
envelope limits of the LMDE, the Transtage engine I_ can be increased to 315 1bf-
sec/lbm. The improved engine was considered for alf maneuvers. Aerojet also
submitted weight estimates for an ablative nozzle skirt required by the Transtage
engine to meet the maximum temperature of 1200° F specified for current Voyager
design concepts. These weight estimates were 315 pounds for the engine at an
expansion ratio of 40 and 360 pounds for the engine at an expansion ratio of 53.5.
These welghts were used in this study.

The Agena Model 8517 is an advanced engine design based on the current Agena

engine concept. Studies of the use of this engine design concept in several
operating modes were made for MSFC by Bell Aerosystems. The concept chosen for this
study used the engine for all Voyager propulsion maneuvers. For this concept, the
engine is pump-fed in a high thrust mode for orbit insertionm, and pressure-fed

in a low thrust mode for midcourse corrections and orbit trim. This design is

also capable of operating in a pressure-fed mode at an intermediate thrust level
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as a high thrust mode backup. The Agena engine welght used in the study was
481 pounds. Other parameters used for the engine are:

Thrust Mixture Is

(1v) Ratio (1bf-sec/1bm)
Orbit insertion 17,600 1.65 316
Midcourse and orbit 960 1.65 291

trim

Data on the C-1 engine were obtained from Thiokol, RMD publications PD-5-66,
Specification No. CD15166A, Revision A, and direct communications with Thiokol
representatives., The C-1 engine is a family of engine designs developed for NASA/
MSFC as backup engines for the Apollo program. The version used in this study

has completed a qualification progrem for the Apollo lunar module. This engine
has the following characteristics:

e  Thrust = 100 pounds

° I, = 298 nominal (either MMH or 50% Naﬂh/so% UDMH and Neoh)
° € (expansion ratio) = 60

° Weight = 12 pounds with quad-redundant values.

IMDE and IMDE/C-1 Comparison -- The parsmetric weight data (Figures 3.6-1 through

-4) show that the propulsion system weights and payload capability of the LMDE

and LMDE/C-l are nearly identical. For the 1979 Mars mission, a design using the LMDE
alone is 35 pounds heavier than a propulsion module using the LMDE/C-1 engines.

This results in a planetary vehicle weight savings of approximately 65 pounds for

the LMDE/C-1 combinastion in 1973.

The manufacturer's predicted relisbilities are 0.9989 for the IMDE, and 0.9992
for the C-1.

IMDE, Transtage, and Agena Engines Comparison -- A comparison of the pertinent
physical and performance characteristics of the three candidate engines is
sumarized in Table 3.6-1. From accuracy considerations, note that the higher

the engine thrust, the greater the planetary vehicle orbit dispersions due to
thrust vector errors and engine shutdown impulse tolerances. Therefore, the Agena
engine is expected to result in greater errors at orbit insertion than either the
IMDE or Transtage. Likewise, the Transtage engine would produce greater dispersions
at midcourse corrections and orbit trim than either the IMDE or Agena engines, The
Transtage engine falls short of the the 1973 Mars mission minimum impulse-bit
requirement of 1 m/sec velocity change for the last midcourse correction. However,
information supplied by Aerojet-General indicates that closing the propellant
valves before full thrust condition is reached will yield impulse bits below the
minimum Voyager requirement.
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Physically, the Transtage and Agena engines are replaceable with the IMDE in the
Voyager design concept because the LMDE has the largest overall envelope. Minor
structural, dimensional, and plumbing changes would have to be made to accommodate
the attachment points and propellant inlet comnections that are dif ferent for each
engine. The effect of the Agena engine gas generator and turbine exhaust on solar
panel heating should be examined. It is probable that additional thermal insulation
would be required for this engine. Additional plumbing and helium supply would
also be required for the Agena engine, as it requires helium injection in the low
thrust mode. The amount of additional helium and pressure bottle volume required
has not been determined. It is estimated that an additional weight of 30 to 100
pounds might be required for that purpose,

None of the three candidate engines have been qualified to the Voyager mission
requirements. All engines have been or will be developed for 50% NoH /50% UDMH
fuel. All manufacturers have stated that they could substitute MMH with little
or no performance degradation. The Transtage engine has been qualified and flown
in space at a mixture ratio of 2, and ground tested at a mixture ratio of 1.6.
The Agena engine model used in this study is, at present, an advanced design
pending Phase II development., The LMDE is currently in qualification and will

be used in the Apollo program prior to its required use on Voyager.

3.6.4 Results

The result of the study was the selection of the LMDE engine for the Voyager
propulsion subsystem. All candidate engines have advantageous features and all
can be adapted to the Voyager application. The main criterion in selection of the
LMDE is that its development status and its application on the Apollo program
more closely support the Voyager propulsion subsystem application. The IMDE/C-l
engines were not used, despite a slight weight advantage, because of the added
complexity to the flight spacecraft.

3.7 ORBITAL DATA RATE ANALYSIS
3eTel Purpose

The purpose of the study was to determine the required amount of data to be trans-
mitted to Earth for the 1973 Mars Voyager orbital mission.

372 Scope

The data acquired by the spacecraft during the total orbital mission is composed
of engineering, science, and relayed capsule data., Photoimaging by the science
subsystem generates approximately 90% of the total orbital data. Therefore, this
study is primesrily involved in determmining the amount of data generated by the
imaging system, 1In determining this data quantity, consideration was given to
the scientific objectives, to Lunar Orbiter results, and to practical spacecraft
telecommunications limitations. The quantity of data generated by the imaging
system is primarily a function of the resolution and surface coverage desired.
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3.7.3 Analysis and Results

A summary of the photoimaging resolution and coverage achieved during the five
Lunar Orbiter missions is given in Table 3.7-l. This program provided high
resolution coverage of potential Apollo landing sites (Missions 1, 2, and 3) and
a lower resolution, topographical survey of practically the total surface of the
Moon (Missions U4 and 5).

Table 3.7-1: LUNAR ORBITER PHOTOGRAPHY RESOLUTION AND COVERAGE RESULTS

MISSIONS 1, 2& 3 MISSIONS 4 & 5
LUNAR LUNAR
RESOLUTION AREA SURFACE AREA SURFACE
(METERS) (km?) (%) (km?) (%)
26,400 0.07 x x
8 132,000 0.35 . .
70 - 100 . . 1.9 x 107 } ]
1200 - 1600 * * 1.9 x 107 99.4%

A similar approach seems applicable to the Voyager program. The higher resolution
pictures would be taken to evaluate specific topographical features and assist in
the search for extraterrestrial life on the planet., The lower resolution pictures
will provide mapping of most of the surface of the planet to permit (1) selection
of capsule landing sites, (2) identification of areas of scientific interest for
more extensive examination, and (3) planning for subsequent missions.

The surface area of Mars is 1l.42 x lO8 km2, approximately T.5 times that of the
moon., Figure 3.7-1 shows the quantity of data resulting from total coverage of
Mers at various surface resolutions. One-meter resolution coverage of a Mars areca
comparable to Lunar Orbiter coverage of the moon (0.1%) would require T.66 x 1012
bits and an attendant trensmission time of 24,k years at an average data rate of
12,500 bps. This transmission data bit rate is considered reasonable for the

1973 Voyager Mars mission, thereby indicating the impracticality of high resolution
coverage of all of Mars. Therefore, & more reasonable compromise in the resolution
and coverage selection is necessary within the constraints of practical date rates
and a 6-month orbital mission. Only 80% of the orbital mission time is considered
effective for data transmission accounting for Earth occultation and DSIF ground
station switchover. A reasonable imaging selection 1s considered to be 0.1%

high resolution coverage and coverage of a large fraction of the planet at medium
resolution. Figure 3.7-2 presents four alternate imaging resolution/coverage
combinations. The recommended science data quantity for the 1973 Mars Voyager
mission is Alternate 2 in that figure. The selected approach provides imaging
coverage of 0.1% of the planet's surface area at an average resolution of 10 meters,
and 75% of the planet's surface area at an average resolution of 300 meters,
corresponding to 1.41 x 1011 bits of data. The total science data for this

imaging data acquisition mode is 1.57 x 101l bits considering imaging data as

90% of the total science data. Since 80% of the mission time is assumed effective
for data transmission, an average bit rate of 12,500 bps is required.
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This selection (1) satisfies the 1973 Mers mission science objectives, (2) provides
imaging coverage comparable to the Lunar Orbiter program, and (3) results in a
data rate that is practical and within the current state of the art.

3.8 LASER TELECOMMUNICATION FEASIBILITY
3.8.1 Purpose

The purpose of this study was to conduct a gross feasibility evaluation of appli-
cability of laser telecommunication to the 1973-1979 Mars Voyager missions.,

3.8.2 Scope

The objectives of the Voyager missions to Mars during the 1970's include the
acquisition of a large amount of imaging data of the planet's surface. The amount
of the data returned to Earth from each mission, however, is limited by the RF
telecomunication system planned for these time periods. Applying laser tele-
communication, with its inherent higher transmission rate-capability, to these
missions would enhance the achievement of the above objectives. Therefore, this
study was conducted to determine the operational applicability and the development
feasibility of a laser communications system for Voyager. No analysis was made
of the use of a laser communications link for spacecraft tracking.

The study was conducted by first detemining the current state of the art of
lasers. This was accomplished by reviewing available technical material and con-
sulting various other companies engaged in laser research. Using this material,

a Voyager system concept was developed and its configuration evolution identified.
A development program was outlined and a gross program schedule prepared. Care
was taken to select only realistic data on the laser system to make a meaningful
comparison with the more proven RF communication system capabilities,

In adapting the system to Voyager, care was taken to introduce laser communi-
cations into the Voyager mission in a gradual, sequential manner. This approach
reduces peak program resource expenditures and makes maximum use of existing
facilities,

The laser telecommunication system concept consists of: (1) an Earth-based
beacon transmitter telescope pointed towards Mars; (2) a spacecraft receiver/
transmitter telescope which uses the Earth beacon signal for tracking purposes

and transmits a laser data beam towards Earth; and (3) an Earth-based receiver
for collecting the spacecraft laser data beam. Figure 3.8-1 illustrates this con-
cept and Figure 3.8-2 identifies the primary functions for each of these ma jor
system elements,

Analyses of the laser transmitters included evaluation of both visible (argon-
helium-neon) and middle infrared (carbon dioxide) lasers. The visible system
was chosen for the 1975 mission because of its more advanced state of development.
Based on consultation with laser research companies, significant improvements
in visible gas laser efficiency and power output are expected to occur within
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the next year. Conservative estimates of these improvements are reflected in the
present study. Further improvements may increase capability and decrease the
size of the configuration selected in this study.

The beamwidth of the Earth-based laser beacon beam can be relatively wide, since
adequate ground power would be available. For this study, a visible frequency
argon laser having a beamwidth of from 1 to 20 arc-seconds was analyzed, Beam-
widths of this size appear to be necessary to account for refractive index fluc-
tuations caused by the Earth's atmosphere. The 20 arc-second beamwidth is con-
sidered sufficient to illuminate the entire spacecraft orbit during its mission
life. By contrast, the required spaceborne transmitter beamwidth is much narrower
to give good ground-based detection for a reasonable spacecraft power level. In
the selected concept, a beamwidth of 0.3 arc-second has been used. Therefore,
spacecraft transmitter pointing accuracies of about 0.05 arc-second (rms) are
required to maintain the beam on a chosen ground station. Since the spacecraft
beam illuminates a small area on Earth, it must be pointed to Earth with a lead
angle to compensate for the change in Earth position during the laser travel time.

The location of the ground station must be selected to minimize the overall
degradation caused by the atmosphere, such as effects of absorption and scattering
as well as intensity (scintillations) and angle of arrival fluctuations. The
ground station will use a 1O-meter effective aperture collector mirror. For this
system, the quality of the collector need not be diffraction-limited. Preliminary
studies have indicated that approximately 8 to 10 specifically located ground
stations are required for continuous coverage to offset inclement weather con-
ditions and the occultation of these ground-based stations due to rotation of the
Earth. A fewer number of ground stations would be required if continuous coverage
is not necessary.

The laser system will also be influenced by whether the Earth receiver is operating
under daytime or nighttime Earth sky conditions. Because of the increased daytime
background noise level, approximately a 10 times greater data rate can be achieved
during Earth nighttime viewing at a given spacecraft power level. Also, a Sun-
Earth-Mars angular limitation exists such that the ground receivers cannot ade-
quately discriminate a spacecraft laser beam in close proximity to the Sun. For
the lasers selected in this study, this angular limitation is estimated at 10 de-
grees., Data were developed to evaluate the laser day/night Sun angle limitations
on each Voyager mission. The data are shown in Figure 3.8-3. The data show that
the orbital portions of all four missl ons primarily occur during Earth-Mars day-
light viewing. Therefore, the daylight laser bit rate is used for this study.

The 10-degree Sun angle limitation will, in some missions, reduce the useful

laser communication life by about 1-1/2 months.

A comparison was made of the data rates for the RF system used in the 1973 space-
craft baseline configuration and the laser system configuration concept developed
in this study. The comparison is shown in Table 3.8-1. The laser capability

is about seven times greater for an equal power input. It should be noted that
the capability increases by a factor of 4 for the laser and by a factor of 2

for the RF as the spacecraft input power is increased. This difference 1n per-
formance increase is caused by the light noise effect in the Earth's atmosphere
becoming significantly less in comparison with the received signal as the laser
power is increased,
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Table 3.8-1: RF AND LASER PERFORMANCE COMPARISON

SPACECRAFT | SPACECRAFT DAT(’Q B)'T RATE,
I NPUT TRANSMITTER ps
TYPE POWER DIAMETER - o
(Watts) (Ft.) 6 6
(260x 10° KM) | (380 x 10° KM)
1973 Mission
Baseline 4 4
Configuration 150 13.7 2.4x10 1.2x 10
(Antenna)
Laser 150 2 2.4x10° 5.5x 107
(Telescope)
Laser 300 2 9.5 x 10° 2.2 x 10°
(Telescope)

* CD = Communication distance.

The low gain portion of the spacecraft RF subsystem has omnidirectional capability
for both receiving commands from Earth and transmitting low-rate engineering data
back to Earth, This feature allows ground control during all spacecraft operations
involving different spacecraft attitudes. Omnidirectional capability in the laser
telecommunication system is not considered feasible. Therefore, a Voyager mission
containing laser telecommunications should also include low gain RF omnidirectional
communication equipment.

3.8.4 Evolution Plan

The plan for applying the laser telecommunication to Voyager calls for an initial
installation on an experimental engineering basis, redundant to a full RF system.
In subsequent missions, the dependency on laser transmission of data can be in-
creased and the RF system decreased. Concurrent with the increased dependence on
laser, the DSN facilities would gradually be expanded to include full laser
capability. The laser system concept has the capability of transmitting commands
from Earth to the spacecraft and the ability to track the spacecraft. However,
the need for implementing laser tracking capability is not apparent, since the
existing RF DSN has adequate tracking capability. The laser system evolution
plan for this study is shown in Table 3.8-2. Laser command and tracking operation
has been included in this table, but further studies may delete this requirement.
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3.8.5 Configuration

Significant sizing values for key system elements have been identified as shown
in Table 3.8-3.

Table 3.8-3: LASER SYSTEM CONFIGURATION DESCRIPTION

7ZE OPTICAL
LASER SYSTEM TELESCOPE 51 sysTEM | ROINTING || Aser
ELEMENTS DIAMETER LENGTH FINISH (arc sec) GAS
(Ft) (ft) (RMS)
\
Ground Beacon 2 7 L/5 to A/10 * Argon
Ground Receiver 33 100 2\ ! _—
7.5
Spacecraft 1.5 with ) A/A'O, Helium
Receiver/Transmitter 2 (E]xfeidv:;(li (l?nffrochon + 0.05 —Neon
Telescope Sun Shade) Limited)

A = Wavelength of light at 5000 angstroms.

The ground station beacon and receiver based on these values are considered to be
within today's state of the art, Therefore, no further effort on detailing the
configuration of this ground equipment was conducted for this study. The space=-
craft receiver-transmitter portion of the system is considered a significant
development task. This observation is illustrated by the requirements for
defraction-limited optics and + .05 arc-second pointing accuracy of the space-
craft laser telescope. -

The spacecraft receiver/transmitter is primarily a 4-foot long, 24-inch clear
aperture Ritchey-Chretien telescope with a L-foot sunshield extension and an
equipment section extending the overall length to 11.5 feet as shown in Figure
3.8-4. The optical laser schematic of the telescope is also shown in the figure.

A key aspect of the schematic is the coarse, medium and fine pointing concepts

of the system., The coarse pointing may be provided by mounting the telescope
assembly on the gimbaled RF support. In this manner, the laser telescope will

be initially pointed to Earth to the same accuracy as the RF antenna. The medium
pointing mode is accomplished by using an optical sensor within the telescope. The
signal from this sensor is used to operate an electrical/mechanical drive mechanism
located on a gimbal mount to which the telescope is mounted. This mechanism
accurately aligns the telescope assembly to Earth. The fine guidance pointing
operation occurs within the telescope by using an optical/electrical beam splitting
mechanism and by moving an optical lens with microactuators. The specific values
for each of the pointing modes are shown in Figure 3.8-5. This pointing operation

3-98




1dIDNOD NOILVINDIINOD ¥3SV1 L4Vi¥DIDVdS ‘48" ¢ 3nbly
NOILD3S LNIWdINO3I

///////////////V/#/:/%////EEIH ¥IAITDIY/YILLIWSNYYEL ¥3SVT
S N

2l
NN
adupbping au /

losua

qu:ev?@ 105USS "pIg "ul yT
a sui . A— J015W AIpw i g m——h
N
sua 194114 S \- oubi
paxig _ou_\EVO sus7 sjqoAaow ﬁmw y~ 1OMIW :_ouomm
N N : Y403
wsid <
[ s31do _O%W_m
A \ 19q!4 ._wbmom__
(
adupping 2/S
o v wsiig a|buy poaT wnipay 4 i x
m D losuag -~
x < N &
osud
- 108uss Buisnooy / NOIIVTIVISNI 13va33ovdS “
8 A X
19507 sndu) /ﬂ_o:cou adoosa|a) Jaso o
oipQ 22UDPING WNIpayy 4403
£ aan1q joquio
34053131 ¥I5V1 (pepuaix3) _ou_cc;omE_o“uw_u
uol4o3g | 1109 P1®4S
suswdinbg adoosa|a} ung ‘\
1 \ . \,/
% > s e, pf \Q
Jo1W 1jo19920dg /P \'Q\ \
*ulog A1opuooag \ \Qli! k
* Z&* - ) — — _&_:maou
/I 101N L .
ﬁ Aowiiyg _
! fo—"4} G* E——ote Hy - Hy >

.
—_ - J— ~ N et . sl



o060 ; ;

D2-115002-2

1dIDNOD SNIINIOd ¥3SV1 LdviD3IOVdS

:g-g" ¢ 91614

Buijuioy
ainyonyg
Buijunoyy
adoosa|a}

saaibap
31n4dNn LS p4d> |sndouo 0Z
. H > 6epyz | © I5¥VOD
uljunow -9opdg ung Aq
adoasaja| 082
295 2UD [saaibap
Alquassy |adoasaje ueoneg e
adoosa;a) Pl 19507 0°t+ r4 WN1aIw
Ysieg
uoopbag 23s 2ip |sainuiw
9440 |odoosajey [ 4e07 | s00F| ¢ EIN[E ~
adoosaja) Y403 )
LN3IW3I13 | uoipoon joubig | Aopunooy | abuny
JQOW
ONIAOW ONISN3S ONILNIOJ

R
Iam &_OC< TUQI—
Y4403 wouiy » \
19507 m \
uoonag m Y4403 o4
' 19507
! }yoidad0dg

Buiyuiog
|9410g
maoumo_m._.

Buijuioy
\l joo14dO

adoasa|a)

3-100




D2-115002-2

is used to establish a precise spacecraft-to-Earth reference line from which the
spacecraft laser signal can be accurately aligned for transmission to Earth. The
spacecraft laser signal is sent to Earth through the same optics simultaneously
while receiving the Earth signal. The lead angle required in pointing the beam to
intercept Earth is accomplished by moving an optical prism element. This angle
can either be calculated aboard the spacecraft or on the ground and transmitted
to the spacecraft via the command link.

The configuration concept for using the laser system for command and tracking
purposes has not been illustrated. Should this feature be used, the sending of
commands to the spacecraft would be accomplished by coding the ground beacon
signal and having decoding equipment aboard the spacecraft similar to the existing
RF decoding equipment. Tracking by the laser system could be accomplished in a
manner similar to the method used by the existing DSN RF system.

For the 1975 mission when the laser system is used as an experiment, no additional
spacecraft power provisions are planned. With today's spacecraft design there
will be periods in the orbit when 150 watts of power will be available, During
these periods the laser will be used. In subsequent missions when the RF high
gain antenna system is removed, the power it previously used can be used by the
laser., In these later missions more spacecraft power for the laser may be neces-
sary to fully utilize the laser telecommunication systems potential. The weight

of a 1975 Voyager spacecraft equipped with a laser is expected to increase approxi-
mately 700 pounds. This increase includes both the weight of the laser subsystem
(telescope, laser source, electronics pointing mechanism, mounting structure, etc.)
and the increase in propellant to accommodate the weight change. Sufficient launch
vehicle payload capability exists to absorb this weight increase.

Thermal design considerations must recognize the low efficiency of the laser-
producing equipment (less than 1%). This loss in power is converted to heat
vwhich must be dissipated in a manner that does not affect the alignment of the
laser subsystem optics.

3.8.6 Development Plan

The development plan established in this study is based on the previously pre-
sented evolution plan. The basic laser equipment for the ground stations and
spacecraft would be developed as an experiment for the 1975 mission. Prototype
units of each would be used in a system-type demonstration and evaluation test
program. After these tests and the ground qualification of the spacecraft equip-
ment, a unit will be used in an Earth-orbit Apollo Application Program (AAP)
mission (preferably in a near synchronous orbit to reduce ground tracking rate).
Subsequent spacecraft units would be produced to support the Voyager spacecraft
ground testing program and to provide the units required for flight. 1In this
plan, only one ground station has been considered for the 1975 mission experiment.
Further laser ground system development is considered necessary to support the
1977 mission should the laser equipment development prove satisfactory.

A schedule for the laser system development is shown in Table 3.8-k which was

based on the current spacecraft program schedule. It is estimated that nine space-
craft laser subsystem units will be required for the 1975 experiment.
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3.8.7 Major Development Problems

Certain major development problems can be anticipated for the laser communication
system., These are:

1)

2)

3)

L)

5)

Development of the spacecraft optical equipment to provide the required
accuracies after having been subjected to the launch vehicle and spacecraft
propulsion subsystem induced enviromments and when operating in space.

Development of an electromechanical space-qualified mechanism required to
point the laser telescope assembly to the required accuracy (i 10 arc-seconds).

Development of a thermal design that will thermally control both the tele-
scope and laser optics to the degree required.

Development of a method for establishing spacecraft telescope coordinates
with respect to the Earth, for orienting the spacecraft laser lead angle
to the required accuracy (about + 1 arc-second).

Determination of atmosphere propagation characteristics on laser beams for
use in designing the ground station. The laser communications satellite
experiment (LCSE) program may be used to obtain this propagation data.

3.8.8 Results

Three major results of the study are:

1)

3)

3.9

Laser data transmission capabilities identified in this study are significant
in providing the spacecraft with greater capability in meeting mission ob-
jectives, Therefore, further study effort is justified to define more fully
the system and the related development program so a project decision can be
made.

An experimental laser telecommunication system is considered feasible for the

1975 Mars mission.

Further studies should include an evaluation of laser communication use for
planets other than Mars. This is considered necessary to ensure that the
development of ground stations and spacecraft equipment for Mars will have
future application to other space exploration programs.

RF HIGH DATA RATE STUDY

3.9.1 Purpcse

The purpose of this study was to explore the feasibility of increasing the infor-
mation bandwidth of the spacecraft-to-Earth data link in the post-1973 missions.
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3.9.2 Scope

The evolution of the orbital science payload will significantly increase the

amount of information to be transmitted from the spacecraft to Earth. This is

true in particular for the photoimaging experiment for which a large film camera

is postulated in 1977 and 1979. The development of laser telecommunications

offers one potential solution to the problem of increasing the data rate. However,
the resources required to develop a new mission operation system (MOS) for lasers
are large. Hence, an alternate solution is the further development of the present
RF telecommunications system which uses an existing MOS (i.e., the DSN). This study
is concerned with such further developments of the RF system.

Two approaches were considered and their implications examined:

1) Increasing the spacecraft effective radiated power (ERP) by the use of
higher output power amplifiers and by incorporating a higher gain antenna.

2) Increasing the efficiency of the utilization of the received signal power through
different modulation techniques.

The study evolved in three steps, as follows:

1) Trades among the spacecraft RF parameters -- Spacecraft ERP was derived as a
function of antenna size for various spacecraft pointing capabilities.

2) Link performance -- Based on the characteristics of the DSIF receiving
equipment, the received carrier-to-noise density ratio (C/kTs) was obtained
as a function of the communications range and of the spacecraft ERP.

3) Trades among modulation-demodulation techniques =-- The information (video)
bandwidth, over which a satisfactory output signal-to-noise ratio can be
maintained, was obtained as a function of the C/kTs for various modulation/
demodulation techniques., Digital and analog modulation techniques were com~
pared and the effect of preemphasis and deemphasis was considered. Modifica-
tions required of both spacecraft and ground equipment were determined for
each modulation scheme.

3.9.3 Analysis and Results

309 03 ol RF Parameters

Effective radiated power (ERP) constitutes the primary criterion for comparing the
performance of various spacecraft communications systems. ERP is defined as the db
sum of the transmitter power and the net antenna gain, less the RF losses in the
spacecraft. The transmitter power is obtained from the nominal output power of the
final amplifier.

The net gain of the transmitting antenna is given by the on-axis gain of the antenns,
reduced by (l) the antenna gain tolerance and (2) the antenna pointing loss. This
pointing loss is the degradation of the antenna gain caused by the antenna not being
boresighted exactly on the recelving station.
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RF losses comprise the transmitter output tolerance (worst-case output, including
effects of aging) and the worst-case value of the transmitting circuit losses.

Output Power -- Tube manufacturers list S-band traveling wave tube (TWT) ampli-
fiers in the 50- to 100-watt range (WJ 274-1, EM 1260) and electrostatically
focused klystron (ESFK) amplifiers from 100 watts to 500 watts (Litton L-50Lk4,

Eimac 3065A). Consequently, four nominal transmitter output levels were considered:
50 watts, 100 watts, 200 watts, and 500 watts.

Antenna Gain -- For the assumed parabolic-reflector type antenna, the nominal on-
axis gain is a function of (1) the antenna efficiency, (2) the antemna diameter,
and (3) the transmission wavelength. Assuming a 50% antenna efficiency (worst-

case value) and using an operating frequency of 2295 mHz, the net gain (Go) of
the antenna becomes

Go = 14,3 + 20 log D

where D is the antenna diameter in feet., Antenna diameters between 2 feet and

20 feet were considered in this analysis. Antenna gain tolerance should include
effects of antenna illumination efficiency and of reflector surface roughness.
Using the worst-case antenna efficiency and a minimum surface roughness of O.l-inch,
the antenna gein tolerance equals zero db.

Pointing Loss -- The pointing loss depends on the shape of the antenna beam and
on the pointing accuracy. The pointing loss, Lg, is related to the cone angle, oc

(i.e., the angle between the boresight axis of the antenna and the direction of
the transmission) by

2
L, = 12 (8,/6,)

where is measured in db and @, is the half-power beamwidth. The per-axis
pointing requirement is the rectangular component of Sc. It becomes a maximum

at a value of 0.707 On. Previous design studies assumed per-axis pointing require-
ments of 0.60 degree (practical) and 0.93 degree (conservative).

RF Losses -~ In general, the spacecraft RF losses vary with the design of the
communications subsystem, including the extent of the redundancy switching pro-
visions. The values of the RF losses determined in previous studies (i.e.,
Task B) were used for analyzing all communication system configurations. The
spacecraft RF losses used in this anslysis therefore consisted of:

Transmitting clrcuit loss 3.1 db
Transmitter output tolerance 1.1 db
(including effects of aging)
Total 4,2 avb
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Spacecraft Constraints -- The selection of the transmitter output power is in-
fluenced by the capabilities of the power and thermal control subsystems. Manu-
facturers' data for the tubes listed above indicate that the efficiency of the RF
amplifiers ranges from 30 to 50%. The higher efficiency value is usually obtained

'at the expense of other performance characteristics. A value of 30% (which includes

the power supply efficiency) therefore was used for this study.

Based on this efficiency, the power and thermal control subsystem design establish
an upper limit of the allowable RF output power., The maximum nominal RF output
power meriting serious consideration appears to be 150 watts.

An increase of the antenna diameter reduces the allowable pointing error. Three
values of the maximum pointing error were considered in this study:

1)

i+

0.93 degree -~ conservative

2) + 0.60 degree -- obtainable with ground calibration of attitude control
sensors and antenna alignment (practical)

3) + 0.35 degree -- obtainable with inflight calibration of attitude control
{a/c) sensors and antenna alignment (feasible).

The table below shows a breakdown of the above pointing errors.,

Breakdown of Pointing Error Components

Conservative Practical Feasible

Per-axis pointing error + 0.93 deg + 0.60 deg + 0.35 deg
Cone angle + 1.30 deg + 0.85 deg + 0.50 deg
Error Components

A/C Limit Cycle + 0.40 deg + 0.30 deg + 0.20 deg
A/C Reference Sensor* + 0.15 deg + 0.15 deg + 0.05 deg
Structure* + 0.47 deg + 0.24 deg  + 0,10 deg
Antenna Control%* + 0,18 deg + 0.10 deg + 0.10 deg

*These components must be root-sum-squared.,

To avoid an excessive increase of polarization loss the pointing error is re-
stricted to the half-power beamwidth, i.e., Ly, < 3 db.

Antenna Size versus Effective Radiated Power (ERP) -- Using the above results,
Figure 3.9-1 shows the trade between antenna diameter and spacecraft ERP for
pointing errors of 0, + 0.35, + 0.60, and + 0.93 degree. These curves indicate the
diminishing trend of achieving ERP increases through an increase of antenna size,
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3¢9.3.2 Link Performance

The received signal power is a function of (1) the spacecraft ERP, (2) the com-
munications distance, and (3) the parameters of the receiving system.

The receiving system parameters used in this study were the worst-case values
shown below,

Receiving System Parameters

Parameter Value
Receiving antenna gain (210-ft dia.) 60.9 db
Receiving antenna pointing loss -0.2 db
Polarization loss -0.1 db
Receiving system noise temperature, Ts 35O K

The received carrier power (C) is the db sum of (1) the spacecraft ERP, (2) the
receiving antenna gain, (3) the receiving antenna pointing loss, (4) the polari-
zation loss, and (5) the free space loss. The free space loss is the signal
attenuation with range, caused by spreading. This loss is a function of range (R)
and transmission frequency. With the values chosen above, the received carrier
becomes

¢ = (ERP) - 20 log R - 39.1

The received noise power density is given by the product of the Boltzmann's
constant K and the system noise temperature Tg. In db temms, k = -198.6 dbm/Hz,
and Tg = 15.% db at 35° K, so that the noise power density, kT, = -183.2 dbm/Hz.
Thus, the received carrier-to-noise power density ratio (C/kTs§db = (ERP) ~ 20
log R + 1hk,1.

Figure 3.9-2 shows the variation of C/kTs with the spacecraft ERP for selected
values of range.

3.9.3.3 Comparison of Modulation Techniques

The two major classes of modulation techniques consist of either analog or digital
methods. Each class has several variations. Digital systems can be coded or un-
coded. Analog systems can use different combinations of phase, frequency or ampli-
tude modulation.

Digital techniques are more amenable to systems having requirements for multiple
data rates and the multiplexing of many different data sources. In addition, when
data are recorded prior to transmission, signal fidelity is easier to maintain in a
digital format. Thus, digital telemetry systems have been the historical choice
for deep space missions and early Voyager requirements specified a digital interface
between the science payload and the data transmission equipment. Analog techniques

3-108
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however, offer a potential improvement in modulation efficiency and merit considera-
tion when the payload is predominantly a single analog sensor (e.g., a higher
resolution film camera) with a high information content.

Digital Modulation Techniques -~ Two digital modulation techniques were considered:
uncoded phase-shift-keying/phase modulation (PSK/PM) and biorthogonal (16,5)
coded PSK/PM.

In both techniques, a digital bitstream shifts the phase of a subcarrier + 90 de-
grees. The resulting phase-shift-keyed subcarrier, in turn, modulates the phase
of the RF carrier. The two techniques above differ in (1) the generation of the
modulating bitstream and (2) the bit detection processes. In both techniques,

the original analog data is sampled and quantized to 6k4 (26) levels. Thus, each
date sample results in a 6-bit pulse code modulation (PCM) word. This PCM bit-
stream constitutes the modulating signal for the uncoded technique. In the coded
technique, every 5-bit block of the PCM bitstream is further encoded in a 16-bit
transmission word. In the demodulation process, the block-coded signal is detected
by cross-correlating each received 16-bit block against the 32 signals representing
the 5-bit blocks of the original PCM bitstream.

The required probability of a bit detection error is less than 0.005. The
following table shows the theoretical and practical bit-energy-to-noise power
density ratios necessary to achieve this performance level.

Required Bit-Energy-to-Noise Power Density Ratios (E/kTq)
Bit Error Probability < 0.005)

Modulation Technique E/kTg (Theoretical) E/kT, (Practical)
Uncoded coherent PSK 5.3 T.8
(16,5) coded PSK 3.5 6.0

The practical values in the above table include a 2.5-db allowance for worst-case
effects of the demodulating hardware. Figure 3.9-3 shows the bit rate as a func-
tion of carrier-to-noise density ratio, C/kTg, for both coded and uncoded digital
modulation techniques, assuming a demodulation loss of 3.6 db.

Analog Modulation Techniques -- Four analog modulation techniques are considered:
(1) ™/pM, (2) VSB-AM/PM, (3) PM, and (L4) FM. With the first two modulation tech-
niques, the video information modulates a subcarrier which, in turn, phase-modulates
the carrier. With these techniques, an additional channel for engineering data
transmission can be accommodated. FM/PM modulation allows tracking of the doppler
shift simultaneously with the video readout. In the VSB AM/PM modulation tech-
nique, the video transmission must be interrupted to obtain doppler data. With

the PM and FM techniques, on the other hand, the video signal modulates the

carrier directly. Therefore, a second transponder is required to handle the turnaround
transmission functions--doppler tracking and ranging--and to provide an engineering
data channel. :
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The video bandwidths of the four modulation techniques were compared as a function

of the carrier-to-noise power density ratio (C/kTg). For this comparison, the
following two constraints applied:

1) Output signal-to-noise ratio is equal to or greater than a specified value.

2) Carrier-to-noise ratio is equal to or greater than a specified value
(carrier-to-noise threshold).,

The output signal-to-noise ratio (S/N)o for all four of the modulation techniques
1s a function of (1) a constant (M) characterizing the modulation techniques,
(2) the modulation index (m), (3) the modulation loss (Ly), (4) the carrier-to-

noise density ratio (C/kTg), (5) deemphasis improvement D), and (6) the maximum
video frequency (fm).

The table below shows the db values of the known parameters.

Modulation Technique M D __Im
No Deemphasis 18 db Deemphasis

P4/PM 4.8 ab 0 db 14.2 db -3.6 ab

VSB-AM/PM -1.0 db 0 db 5.8 db 0 adb

PM 0 db 0 db T.4 db 0 db

M 4,8 ab 0 db 14.2 db 0 db

The analog modulation techniques were compared on the basis of a 23.5-db (rms/rms)
output~signal-to-noise ratio, which is the Lunar Orbiter design value.

Based on the required output signal-to-noise ratio constraint, the relationship

between the maximum video frequency (fm) and carrier-to-noise density ratio (C/kTS)
is found to be:

10log fm = M+ D - (s/N)o + 10 log (3 m2) +L + C/k’I's

Another relationship between the ssme two quantities arises from the required
threshold carrier-to-noise ratio. The carrier-to-noise ratio(%)is a function of Im,

C/k'l‘sé and Bjr, where Bjp, the IF bandwidth, is a function of the modulation index
(m), ¢ =1 + S -10 Log Bjy. The available data bandwidths of the four analog
N o kTg

modulation techniques are compared in Figure 3.9-4 assuming no deemphasis and assum-
ing an 18-db deemphasis.

Modulation Considerations ~-- On the basis of the preceding data, Figure 3e9-k
indicates a clear-cut superiority of the FM carrier modulation technique. However,

a number of other factors must be considered in the final selectian of the modula-
* tion technique.
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1) The digital techniques, in general, provide a superior performance if the
signal is to be relayed, either in real or nonreal time, This aspect becomes
important if the signal received at a remote ground station will be recorded
for a subsequent processing at a central site,

2) The digital techniques lend themselves easier to multiple data rate capability.

3) The carrier modulation techniques, FM and PM, have a poor low frequency
response because of carrier instabilities (doppler and thermal drift). 1In
general, TV systems require good low frequency response down to the field
scan rate, while a photo readout system will operate satisfactorily if the
low frequency response encompasses the line scan rate, A satisfactory oper-
ation of this modulation technique thus requires that the line scan frequency
is well above the carrier frequency uncertainty.

L) The VSB-AM/PM modulation technique was evaluated by a direct scaling of the
Lunar Orbiter communications subsystem., If this technique is adopted, a
more detailed study of the actual filter requirements will be necessary.

5) The FM/PM system can be used as a single-subcarrier video transmission link,
Omission of the second subcarrier reduces the modulation loss, resulting in
a 1l to 1.,5-db improvement over the two-channel configuration. As with the FM
and PM techniques, a second link is then necessary to provide the other com-
munications functions,

6) The amount of pre-and deemphasis available depends on the frequency response
of the signal source. The 18-db preemphasis can be obtained with & Lunar-
Orbiter-type film readout system. With a slow-scan vidicon readout, the
available preemphasis will be about 6 to 9 db.

3.9.4 Conclusions

The link analysis of Section 1.2.3, Volume III, (D2-115002-3) showed that for 1973
mission, a spacecraft ERP of 79 dbm is required to support the 48,000 bps data
rate. For a constant pointing error criterion of + 0.6 degree, the spacecraft
configuration required a 13.7-foot antenna and a 50-watt warst-case transmitter.

The results of this study can be used to define the spacecraft configuration
required to support the higher data rates anticipated for the 1977 and 1979 mis-
sions. A 50-watt (nominal) transmitter output power, a + 0.35 degree pointing
error and a 19-foot antenna, result in an ERP of + 81.5 dbm. Increasing the
transmitter power to 140 watt raises the ERP to + 85.9 dbm.

In terms of data transmission capability, this worst-case ERP value at & range of

3 x 108 km is equivalent to + 88.3 dbm nominal ERP at 3.6 x 108 xm. The parameters
of the 1977 and 1979 communication subsystem which can be derived from the results
of this study are sumarized in the table below. For a fixed transmission rate of
320,000 bps, the digital system requires an ERP level of + 92.4 dbm consisting of a
19-foot antenna and a 360-watt transmitter. The equivalent information transmission
(27 kHz) in an analog system requires a spacecraft ERP of + 88.3 dbm which is imple-
mented with a 19-foot antenna and s 14O-watt transmitter, a saving in primary power
of 735 watts.
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For a fixed spacecraft ERP level of + 88.3 dbm, the analog system with the con-
figuration given above is capable of transferring information equivalent to a digi-

tal rate of 320,000 bps. With this level of ERP, a digital system could transmit
only 124,000 bps.

Fixed Transmissioq’ < Fixed Spag;;raft
Rate v
Zz
°du1at1:2hnique Digital Analo Digital
Telecommunication (16§2%/;§ded ZSBgM/PaM (16§g%/g§ded
Parameters i
Transmitter power (watts) 360 140 140
D.C. Power 1200 465 465
Antenna Diameter (ft) 19 19 19
X
Effective Radiated Power (dbm) 92.4 88.3 88.3
Data Bandwidth (kHz) 6L4* 27 10.3%*
Data Rate (bps) 320,000 320,000% 12k,000

¥Equivalent parameters.

* These nominal values are derived by adding 2.4 db to the worst-case ERP scale
values of Figure 3.9-k.

Comparison of all the modulation techniques considered in this study (Figure 3.9-k4)
indicates a 9-db (factor of 8) spread in the bandwidth capability between the
digital uncoded PSK/PM technique and the analog FM carrier modulation technique.
In view of the preceding considerations, a 4 to 5 db (or factor of 3) improvement
over the (16,5) coded digital PSK/PM technique could be achieved with an analog
modulation technique, such as VSB-AM/PM, for the 1977-7T9 Voyager mission profiles.

3.10 CONCLUSIONS
Significant conclusions from the mission and system analyses are as follows:

1) Based on a detailed space mechanics analysis, the 1973 mission orbit and
interplanetary trajectory parameters (periapsis, apoapsis, orbit period, orbit
inclination, arrival date, illumination angle, etc.) presented as baseline
requirements in Section 2.0 are considered practical and achievable.

2) Should program events occur that prevent a launch within the performance
envelope (launch date span), several program alternates are available,
permitting a less than optimum mission. These alternate missions will
accumulate useful data prior to the subsequent (2 years in the future)
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8)
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A significant increased weight (approximately 3000 pounds per planetary vehicle)
in Mars orbit can be realized over the 1973 baseline mission by careful selec-
tion of launch periods, launch dates, and type of interplanetary trajectory.

To maximize telecommunication capability (minimum Earth-Mars distance), early
Mars arrival dates should be selected and full propulsion subsystem capabllity
utilized for the 1973 mission. An increase of 2 times in the potential data
bit rate is possible within the 1973 mission design envelope by selecting the
most advantageous launch in preference to an early April 1974 arrival.

The canister could be separated prior to orbit insertion. However, to increase
confidence in the maintenance of planetary quarantine, and to simplify flight
capsule thermal control, it is recommended that the canister be separated sub-
sequent to orbit insertion.

All candidate propulsion units (LMDE, LMDE + C-1's, Agena, and Trans-stage
engines) satisfy the Voyager spacecraft system requirements, but LMDE is pre-
ferred.

A quantity of 1.57 x 101! bits was determined to be the required amount of
data necessery to satisfy the 1973 mission scientific objectives. This
amount of data for a 6-month 1973 mission orbit life results in an average
data bit transmission rate of 12,500 bps.

A laser communication system is desirable for use during orbital mission
operations to transmit larger amounts of science data to Earth. An extensive
development program is believed necessary for incorporating the proposed laser
system into the Voyager program. Therefore, to avoid peak expenditure of
resources, the first installation should be experimentsl and scheduled for the
1975 mission. ~

The use of digital modulation techniques for the 1973 data link is consistent
with that mission's science payload. When a large amount of analog data is
generated by a single sensor (i.e., the high resolution film camera in 1977
and 1979), anslog modulation techniques, such as VSB-AM/PM, provide greater
transmission capability (approximately 3 times) than digital modulation tech-
niques for a given level of effective radiated power.
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4.0 VOYAGER MARS 1973 SPACECRAFT DEFINITION SUMMARY

The spacecraft configuration for this study was developed by using (1) the require-
ments and constraints presented in Section 2.0 of this document, (2) the results of
the system level analysis given in Section 3.0 of this document, and (3) available
data produced in previous Voyager design efforts. This developed spacecraft con-
figuration is described in D2-115002-3, A summary of this description is included
in this volume for ready reference for the operational support equipment (OSE) and
mission-dependent equipment (MDE) preliminary requirements and concepts, and for the
spacecraft logistic considerations discussed in Sections 5.0 and 6.0 of this volume.

The configuration was basically developed by (1) identifying the functional elements
of the spacecraft, (2) determining the equipment requirements necessary to perform
these functions, (3) estimating the equipment physical characteristics, and (4) inte-
grating the equipment into an overall spacecraft configuration that satisfies the
Section 2.0 requirements and constraints., The functional spacecraft elements must
provide electrical power, guidance and control, data storage, telecommunications
(telemetry, radio, and antenna), computing and sequencing, data storage, propulsion,
structural and mechanical support, pyrotechnics, temperature control, cabling and
prackaging, and provision for spacecraft science. The development of the spacecraft
configuration from these functional elements considered the design objectives of:

1) High packaging density.
2) Modularization of major spacecraft elements,
3) Efficient structural concepts.

4)  Unobstructed viewing by science and engineering equipment (sensors and
antennas).

5) Subsequent mission growth capability with minimum modifications.

Using these design objectives, the spacecraft was divided into three basic modules.

These are the basic support, equipment, and propulsion modules, as shown in Figure
41, The basic support module is composed of the support truss and the primery
spacecraft support ring. This support ring supports the guidance and control bay
and other equipment, including the deployable science scan platform, and the low
gain, medium gain, and high gain antennas. The equipment bays and cable tray assem-
bly form the equipment module which attaches to the support ring on the basic support
module. The removable propulsion module is the third module. This module contains
and supports the capsule support structure, the main propellant tanks, the propellant
pressurant tanks, the start tanks, the engine, and all associated plumbing and wir-
ing., This module fits inside the basic support module support ring and joins that
assembly at the eight apexes of the support truss. The equipment support module is
stabilized by joining the upper cable tray to the upper portion of the propulsion
module. The guidance and control system is installed and aligned with the space-
craft. The attitude control nozzles are mounted on the external support truss and
the four nitrogen tanks are installed in pairs in the equipment module. The solar
array connects between the outer circumference of the support truss of the basic
support module and the inside of the propulsion module.
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Significant configuration features of the spacecraft are an overall diameter of

240 inches and a maximum length of 170 inches in the stowed condition. The solar
array area is 290 square feet, and the high gain antenna diameter is 13.7 feet.

The propulsion module engine is a modified lunar module descent engine (LMDE) using
Earth-storable bipropellants. The spacecraft with the 1973 mission propellant load
weighs 16,520 pounds, including a weight of 371 pounds for science instruments and
DAE. Figure 4-2 is a general view drawing of the complete spacecraft. This drawing
shows the stowed and deployed conditions and gives the overall dimensions, equipment
arrangement, and view (cone and clock) angles for the viewing equipment.
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5.0 PRELIMINARY OPERATIONAL SUPPORT EQUIPMENT AND MISSION-DEPENDENT
EQUIPMENT REQUIREMENTS AND CONCEPTS

Operational suppcrt equipment (OSE) must be developed that will (1) provide a high
probability of success that the launch will occur within the launch window, (2)

provide a high degree of confidence in the technical integrity of the spacecraft
system, and (3) be economically sound. The development of OSE is affected by the
geographic location for performing the various assembly and test operations and
by the constraints of the flight hardware design. The development is further
affected by the need to interface with equipment provided by several NASA centers,
each having one or more contractors. Under these conditions, identification of
OSE requirements must be accomplished by system engineering practices that
account for the interface, location, and schedule constraints. The objectives

of this task, i.e., to establish preliminary OSE and MDE requirements for the
1973 Voyager spacecraft, were approached with these criteria in mind.

5.1  APPROACH

For the purpose of this study, OSE was defined as that hardware and software
required to support activities at Kennedy Space Center (KSC).

In developing these requirements, the following steps were taken:

1) An OSE concept compatible with the spacecraft configuration was developed.

2) Test and operation flows for the 1973 Voyager spacecraft were developed.

3) Preliminary OSE requirements and related tests and locations were identified.
4}  Interfaces were identified and tabulated.

5) Commonality between OSE and MDE was determined.

6) Applicability of Apollo ACE and Saturn V ESE concepts was evaluated.

To implement these steps, it was necessary to analyze the complete system-level
sequence of assembly and test operations including activities at the contractors
facility prior to delivery at KSC. This approach led to the identification of
factory support equipment (FSE) as well as OSE and ensured that testing operations
in the factory complemented field test operations and equipment usage. Equipment

requirements common to different areas of assembly and test were identified,
52 TEST AND OPERATIONS ANALYSIS

This analysis was directed to assembly, checkout and test, handling, transportation,
capsule integration, payload module integration, and final payload test and launch
operations. The flow diagrams and analysis were implemented by the approach
defined in NHB 7500.1 Apollo Logistics Requirements Plan. These flow diagrams

are shown in Appendix A. The test and operations analysis was performed as
depicted in Figure 5-1 below:
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Figure 5-1: TEST AND OPERATIONS ANALYSIS

Terminology used in discussing elements of the Voyager Payload is as shown in
Figure 5-2. As a prerequisite to establishing the functional flow, the
operational concepts and constraints were defined. These are given in Section
5.4,1. They establish the assembly and test, transportation, handling, and
prelaunch operations criteria on which the flow is based. An analysis of flight

mission operations, in which MDE requirements are defined, is presented in
D2-115002-4, Section 2,0.

The necessity for trade studies was revealed during the functional analysis. As
an example, the operational concept initially assumed the spacecraft would be
fueled at an explosive-safe area., A trade between fueling the spacecraft on the

launch pad and fueling in an ESA led to selection of fueling on the pad as the
preferred approach.

Having identified the constraints and concepts and conducted the necessary trades,
it was possible to develop the system-level flow diagrams. These flows detailed

the operations to a degree sufficient to permit preliminary definition of support
hardware requirements.

OSE requirements for assembly and test operations at KSC were then identified.
In addition, the performance requirements of the OSE were also established.

Review of manufacturing final assembly and test operations permitted identifi-
cations of tests required to support the KSC activity. As a result, common OSE
requirements were also developed. Concurrent with this analysis, preliminary
equipment interfaces were identified. The preliminary OSE requirements are

included in Section 5.5, and the preliminary interface identification is included
in Section 5.6,

2«3  OPERATIONAL SUPPORT SYSTEM CONCEPTS

The total operational support system consists of the complex of equipment and
other resources required to prepare and launch the space vehicle. For convenience,
this system has been divided into four major categories:

5-2
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1) The launch complex;

2) The test complex;

3) The assembly, handling, and shipping equipment;
L)  The fueling and servicing complex.

An existing operational support system that is illustrated in Figure 5-3 supports
current programs. The basic concept for the Voyager spacecraft OSE is to make
maximum use of existing facilities and equipment and to add only that equipment
required to accommodate unique features of the Voyager flight hardware. Figure
5-3 further illustrates the area in which unique Voyager spacecraft OSE must be
added. Note that the Deep Space Network with its MDE is shown for continuity.

This study was to establish requirements for Voyager spacecraft unique OSE that
directly supports spacecraft requirements and is compatible with the existing

system. The requirements must consider the interface with other Voyager system
OSE as shown in Figure 5=3,.

536l Launch Control Equipment

The launch control equipment required for the Voyager spacecraft launch consists
of:

1) Display and control consoles located in the launch control center.

2) Automatic monitoring and control equipment located on the launch umbilical
tower,

3) Spacecraft ground power and emergency power equipment located on the launch
umbilical tower,

h) S-band repeater antennas and frequency converters.

The display and control consoles enable the Voyager launch personnel to monitor
status of both spacecraft and to exercise all basic control required during
countdown. The major data source for the display console is the test system
located in the spacecraft checkout facility.

The automatic monitoring equipment provides a continuous monitor of all critical
planetary vehicle functions and automatically "safes'" the planetary vehicle in
case of critical malfunctions or complete loss of ground power. In addition,
this equipment receives and reacts to launch vehicle initiated holds.

The spacecraft ground power system provides d.c. power to the planetary vehicle
during the launch countdown. Included in the ground power system is the capability
of charging the spacecraft batteries.

The S-band antennas provide the radio frequency path between the planetary vehicles
and the DSIF-Tl., The frequency converters make it possible to use hardlines as

the checkout patch between the planetary vehicles and their test systems during RF
silence,

5-4
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5342 System Test Complex (STC)

The STC provides the test capability required for spacecraft testing separately
and when integrated to form a planetary vehicle, payload module, and payload.

The STC consists of a test controller and brocessor, simulators, stimulators,

a gimbaled two-axis test stand, and anclllary equipment items. This equipment
employs a high speed general purpose computer as the test controller and data
processor. The basic arrangement of this equipment and their interfaces is shown
in Figure 5-4,

The test controller and processor is a computer employing a 24-bit word length
and a 16-k core memory. Add-times of approximately 4 microseconds and a memory
cycle time of 2 microseconds will be required,

At least four buffered input-output data channels and off-line-memory in the fom

of disk or drum bulk storage will be required. Auxiliary data equipment will be
needed to satisfy all test requirements.

Additional signal processing equipment consists of modulators, demodulators,
decommutators, decoders, and bit synchronizers. This equipment is to be a
duplicate of the mission-dependent equipment.

The STC also includes power equipment that supplies ground power to the space-
craft during testing. These power supplies simulate the characteristics of the
spacecraft solor panels and batteries,

Communications equipment is provided for use by the test and operations personnel
to facilitate the exchange of planned and unplanned event information with remote
stations as required. The simulation and stimulation equipment is used to
provide signals to the spacecraft and to simulate spacecraft interfaces,

5¢3¢3 Assembly, Handling, and Shipping Equipment (AHSE)

The AHSE provides the capability for lifting, holding, positioning, aligning, and
shipping the spacecraft, planetary vehicle, payload modules and nose fairing.
Requirements to perform these functions will exist at a manufacturing assembly

area during assembly and test operations and at KSC during final assembly and
checkout.

5¢3.4  Fueling and Servicing Equipment (F&SE)

Spacecraft fueling and servicing will include all activities required to load
main propellant, attitude control propellant, and propulsion pressurants. Fuels
and pressurants will be transferred to the spacecraft under Class 100,000 clean

room conditions. Particulate contamination will be controlled in the propellants
and pressurants. The pressurants will be loaded aseptically.

Existing facilities for fueling the Apollo service and command module hypergolic
propellants will be used. These facilities are currently located on mobile
service structure platforms III and IV at the 272- and 279-foot levels,
respectively. Modifications will be required to extend lines for MMH and N20), to

5-6
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the 280~ and 305-foot levels for connection to the spacecraft access
locations. Facility modification will include sufficient capacity for MMH and
NQOA propellants for all launch opportunities. Platform access must be at
these levels which will require relocation of platforms III and IV and modifi-
cation for adaptation to the payload module 260-inch diameter., Facilities
will be added to load the pressurants aseptically. Provisions for clean room
control will be incorporated at each work platform. Existing procedure and
equipment will be used for metering the quantity of fuel and oxidizer tanked.
Tank calibration techniques will be used to achieve desired fuel quantity
measurement accuracye.

5.4 TEST AND OPERATION FLOW DIAGRAMS

The concepts and constraints governing the activities to be defined by the opera-
tional flows were established as follows:

1) Manufacturing Assembly Operations

a) The spacecraft structure is received at a Voyager assembly facility (VAF)
in the launch attitude and resting on its own transportation support.
This facility is remote from the Kennedy Space Center (KsC).

b) The spacecraft structure, on which final assembly is begun, is an assem-
bly consisting of the star truss, primary spacecraft support ring, and
equipment bay structure.

c) Internal insulation blankets will be installed as part of the spacecraft
structure subassembly.

d) Electronic equipment referenced in the flow includes all electronic bay
subassemblies.,

e) Cabling will be delivered to the VAF as a subsystem.

£) The science equipment will be delivered as a subsystem.

assembly and installed as a unit.

h) Storage will be provided at the VAF for components delivered prior to
assembly.

i) Solar panel simulators will be installed during manufacturing tests,
Flight solar panels will be installed for acceptance test and delivery.

J) Test batteries will be used during assembly and test.

k) Electroexplosive device simulators will be used during assembly and test.

n
~

Spacecraft Acceptance Testing

a) Acceptance tests will be conducted at the VAF.

5-9



3)

k)

D2-115002-2

The flight spacecraft and ground test spacecraft acceptance tests will
include a thermal vacuum test.

The thermal vacuum test chamber at The Boeing Company, Space Division
facility, will be used for acceptance testing.

The high gain antenna will be removed for thermal vacuum testinge.

Payload Module (PIM) Assembly and Test

a)

b)

g)
h)

i)

3)

A flight capsule will be delivered to the VAF unfueled for assembly to
the spacecraft.

The unfueled flight capsule will be assembled to the spacecraft for a
Joining test.

A planetary vehicle integrated system test will be conducted.
Flight shrouds will be delivered to the VAF for payload module assembly.

The shroud will be a structural member capable of supporting the plane-
tary vehicle for purposes of handling and transportation.

The payload module will be assembled at the VAF for shipment to KSC with
the following restrictions:

o The capsule will not be fueled.

® Pyrotechnics will not be installed.

o Flight batteries will not be installed.

e The propulsion system will not be fueled.

o The reaction control system will not be charged.

A payload module integration test will be performed.

Payload module envirommental control will be provided during shipment,

The payload module will be air-transported from the VAF to the KSC skid
strip.

The payload module will be shipped in nonlaunch attitude.

Final Assembly and Test at XKSC

a)

b)

The PIM's will be processed at KSC in a Voyager final assembly area
(VFAA) .

The following sequence will be performed at the VFAA:

5-10
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® The shroud will be removed,

® The capsule will be removed and delivered to a capsule test facility
for fueling, sterilization, and test.

® OSpacecraft operation will be verified by test.

® The capsule will be returned to the VFAA in a sterilized, fueled, sealed,
and tested condition for integration with the spacecraft,

e The planetary vehicle will be reassembled and tested. The flight
shrouds will be reinstalled and the payload module tested.

® TFlight batteries and pyrotechnics will be installed during payload
module buildup.

® Weight and balance tests will be conducted on the planetary vehicle
and payload module using simulated fuel and oxidizer in the spacecraft,

A stacked payload test will be conducted as follows:

® The nose cone and spacer will be provided to assemble a payload con-
figuration.

® A launch vehicle simulator will be used for instrument unit (IU) inter-
faces,

Following payload stack tests the payload modules, spacer and nose cone
will be destacked and stored in the VFAA,

The payload will be stacked on the launch vehicle (L/V) at the pad and
will not be processed through the Vehicle Assembly Building (VAB).

Launch Pad Operations

a)

b)

c)

d)

f)

The payload modules, spacer, and nose cone will be transported to the
launch pad in the launch attitude.

Individual payload module environmental conditioners will be provided
during transportation to the pad and during stacking.

External weather protection to the payload will be provided while stacked
at the pad.

Umbilical connections to the payload modules will be provided for cooling,
purging, power, and limited signal access. There will be no RF windows
in the shrouds. Telemetry data will be transmitted through the IU,

The spacecraft will be fueled at the pad.

Access will be provided through the shroud for fueling connections from
the mobile service structure (MSS).

5-11
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Based on the above concepts and constraints, flow diagrams were prepared and are
presented in Appendix A,

The summary flow diagram (Sheet 1) categorizes the numbered functional steps into
elght general phases as follows:

Phase Functional Step Series

Assembly and test of spacecraft 11000 and 12000
Assembly and test of planetary vehicle and 13000

pay load module
Transport payload module to KSC 14000
Disassemble payload module and test spacecraft 15000

at KSC
Assemble flight planetary vehicle and test 16020
Assemble flight payload module and test 17000
Stack flight payload test, destack, and standby 18000

storage
Transport to pad, stack to space vehicle test, 19000

fuel spacecraft, and launch countdown
5.5 PRELIMINARY OSE REQUIREMENTS
This section is divided into five subsections. The first subsection summarizes the
general requirements applying to all OSE. The remaining four subsections itemize
the specific requirements for:
° Launch control equipment
° System test complex equipment
o Assembly handling and shipping equipment

° Fueling and servicing equipment.

5.5.1 General Requirements

The operational support equipment shall:
1) Operate independently of launch vehicle electrical support equipment (ESE).
2) Acquire, process, distribute, and display spacecraft and test facility data

for real-time and non-real-time analysis by the use of a general purpose
computer system,

3) Perform automatic test sequencing with manual override, semlautomatic test
sequencing, and manual test sequencing.

5-12
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Provide test documentation by recording on magnetic tape.
Be flexible in design to accommodate configuration changes,

Be interchangeable with respect to servicing different spacecraft of the same
design.

Be designed for expeditious disassembly, transport, and assembly in support of
any testing required at remote test facilities.

Provide self-test and calibration validation.

Perform diagnostic test routines and isolate malfunctions to the provisioned
spares level,

Provide critical path redundancy where applicable to ensure high probability
of successful launch,

Contain safeguards that minimize hazard to mission hardware and operating
personnel.

Provide automatic monitoring, interlock circuitry, and safe capability,
Provide emergency power sources where required.

Accommodate a single point ground system in accordance with that used for
Saturn V at Launch Complex 39.

Provide central voice communications.
Distribute time codes from a central source,

Synchronize its time source to‘Launch Complex 39 Saturn timing equipment.

2¢5.2 Launch Control Equipment

The launch control equipment shall:

1)
2)

3)

k)
5)
6)
)

Provide monitoring of spacecraft d.c. bus voltage levels,
Provide monitoring of spacecraft a.c. bus valtage levels.

Provide means of simulating spacecraft clock start signal from launch control
equipment,

Provide external power to spacecraft,
Automatically evaluate safety-critical umbilical functions.
Provide emergency backup power.

Display spacecraft status at the launch control center.

5-13
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Route capsule data to capsule launch control equipment.

Route status information to the launch director,

Sequence control by T-count rather than real time as required.

Provide automatic safeing of spacecraft in the event of complete power failure.
Provide automatic safeing in the event of loss of any critical control.

Provide computer and sequencer memory load command.

5.5.3 System Test Complex Requirements

The following are specific test pareameters of the Voyager spacecraft for which STC
hardware and software must be provided:

1)

2)

3)

k)

5)
6)

)
8)
9)
10)

Evaluate d.c, bus voltage levels and noise content as a function of simulated
solar panel inputs and changing loads due to spacecraft operating modes.
Simulated solar panel inputs varied as a function of mission operations.

Evaluate a.c. bus voltage levels, frequency, and waveform as a function of
simulated solar panel inputs and spacecraft operating modes.,

Provide evaluation of the following guidance and control (G&C) parameters as
a function of mission operations:

° Sun acquisition signals

° Sun sensor error signals

® Star mapping signal

° Canopus sensor error signal
' Canopus recognition signal
° Gyro signals.

Provide means to simulate input commands from computing and sequencing sub-
system, 6-volt, 4,8-kHz (square wave).

Provide means to simulate propulsion thrust vector control feedback signals.

Provide means to simulate electroexplosive device fire signals from pyrotechnic
subsystem.

Provide means to stimulate coarse and fine Sun sensors.
Provide means to stimulate Canopus sensors.

Provide means to torque gyros.

Provide a ground test transmitter similar to DSIF type.

5-14
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Provide a ground test receiver similar to DSIF type.

Provide a means for verifying the command loop.

Provide capability to modulate test transmitter from prerecorded tape and/or
manual command word generator,

Provide means of determining RF characteristics input to spacecraft radio

system.

Provide means of simulating capsule RF inputs.,

Provide ability to demodulate RF carrier and recover telemetry data.

Provide ability to determine RF characteristics generated by the spacecraft.

Provide means of verifying ranging operations.

Provide means of decoding and decommutating telemetry data.

Provide means of calibrating and converting the spacecraft telemetry data to
engineering fomat.

Provide means of simulating

Provide means of evaluating

vehicle.

Provide means of evaluating

stream,

Provide means of evaluating

ing subsystem,

Provide simulated gyro rate

Provide means of simulating

Provide means
Provide means
Provide means
Provide means

Provide means
equipment.

of

simulating
simulating
simulating
simulating

simulating

Provide means of evaluating
spacecraft subsystems,

the science subsystem data storage inputs.

telemetry and radio outputs provided to the launch
the lower subcarrier pulse-code-modulation data
command detector output to computing and sequenc-

inputs,

accelerometer inputs.

"Sun present" and "Canopus present" signals.
commend baseband input signals.

antenna position signals.,

separation signals,

spacecraft clock start signal fram launch control

computer and sequencer (C&S) outputs to other

5-15
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Provide test electrical explosive devices to enable actuation of release and
deployment mechanisms via pyrotechnics subsystem,

Provide means of determining mechanical aligrment of deployables in both stowed
and deployed positions.

Provide means of compensating for Earth gravity during testing of deployables.
Provide means of collimating antenna electrical and mechanical axes,
Provide means of collating antenna axis to Sun and Canopus axis.

Provide means of stimulating spacecraft transducers. A minimum of three points
within the dynamic range is required.

Provide a means of recording the telemetry digital data versus stimulus for each
point on each channel, This recording shall be in both engineering language
and machine language.

Provide a two-axis gimbaled test stand with servo drive with the following
requirements:

Freedom - 360 degrees in roll
- 180 degrees in pitch
Rate - 0,02 degree -0.2 deg/sec
Provide star field and Sun simulation.
Provide spacecraft position information with respect to star field.

Provide means to communicate (RF) with spacecraft after acquiring Sun and
Canopus.

Provide means of variable RF transmission delay to simulate Earth-to-Mars
distance.

Provide means to shift transmitter frequency to simulate doppler effect.
Provide means to vary spacecraft bus voltage.

Provide a means of transmitting all spacecraft commands.

Provide means of evaluating spacecraft performance via telemetry downlink.
Provide means to simulate midcourse and orbit insertion firing response.

Provide means to simulate acceleration signals due to midcourse and orbit
insertion firing reactions.

Provide means of extending deployables after acquiring Sun and Canopus
reference.

5-16
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52) Provide means to test the science subsystem.

53) Provide computer and sequencer memory load command.

5.5.4  Assembly, Handling, and Shipping Equipment

Assembly, handling, and shipping equipment (AHSE) will:

1) Provide containers for the following:

Ordnance storage, handling, and shipping

Payload module enviromment control pack

Shroud umbilical simulator storage, handling, and shipping
EED storage, handling, and shipping

Battery storage, handling, and shipping.

2) Provide hoists, adapters, and slings for the following:

W
~—

=
e’

Nose cone stacking

Payload module assembly handling and stacking
Payload module weight and balance fixture
Shroud section assembly

Planetary vehicle handling

Capsule handling

Planetary vehicle weight and balance fixture

Payload module attitude rotation.

Provide envirommental protective covers for the following:

Payload
Payload module
Spacecraft

Nose cone.

Provide aids, jigs, and fixtures for the following:

Nose cone aligmment and positioning

Payload module stacking, aligrment, and positioning



5)

6)
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° Weight and balance alignment

° Shroud section assembly

° Air transport loading

) Hydraulic hoist control.

Provide platforms for the following:
° Payload module assembly and test

° Payload module storage

° Nose cone support and storage
° Launch vehicle simulator support
° Assembly and test area payload operations.

Provide additional items as follows:
™ Ground transport of payload modules and nose cone

° Miscellaneous handling dollies and work stands.

5,5.5 Fueling and Servicing Equipment (F&SE)

The following specific requirements must be met by the F&SE to fuel the spacecraft
on the pad in the payload stacked positions:

1)

2)

3)

k)

5)

Provide a means to transfer MMH and nitrogen tetroxide from a transfer storage
system at the launch pad to the spacecraft propulsion system fuel storage
spheres.

Provide a means to charge the propulsion pressurant storage with 40 pounds of
helium at 3500 psi.

Provide a means to charge the attitude control system with 61 pounds of GN2 at
3500 psi.

Provide a means to retain spacecraft enviromment during fueling at Class 100,000
or better clean room conditions.

Provide a means to control fuel and fuel line particulate contamination.
Particulate contamination shall not exceed the following absolute values:

Size (microns) Allowsble Number of Particles
Below 5 No limit
5 to 25 220
26 to 100 10
Over 100 None
5-18
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6) Provide a means to filter and load pressurant such that particulate contamina-
tion shall not exceed the values listed under Item 5.

5¢5.6 OSE Software Requirements

The major elements of OSE software are the computer programs required for the system
tests, These are as shown in the matrix below.

Voyager Voyager
Assembly Final Assembly
Facility Area Pad
Spacecraft X X
Planetary vehicle integration X X
Payload module integration X X
Payload integration X X
Flight simulation X X

Launch control equipment

Tests at the factory and at all subsequent test locations will have common elements.
The basic software program is that used for spacecraft tests at the factory. This
program will accommodate the use of simulators and will provide for the most detailed
of all spacecraft tests. It will also be the most exacting from the test tolerance
standpoint.,

As the spacecraft processing sequence approaches the launch configuration by
integration into the planetary vehicle, payload module, and payload configurations,
the basic test program will be modified to:

1) Accommodate flight hardware replacement of simulators.

2) Accommodate additional testing imposed by integration requirements.

3) Accommodate cone of tolerance conditions.

4)  Accommodate the decreased availability of test points.

As the test program approaches the final flight condition, the test software con-
figuration approaches that of the DSN software, thus providing for test and mission
data continuity.

OSE software will consist of those programs required for real-time control of the
spacecraft during tests, real-time control of the test hardware during tests, on-

line data analysis, offline data analysis, display, test control, and executive rou-

tine required to tie these programs together. Software programs must have the
ability to:
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) Generate commands and decommutate the telemetry data.

° Fault-isolate to the replaceable level consistent with the phase of testing
involved.

° Provide for repetitive testing of a given subsystem while varying the parameter
to which the particular subsystem is most sensitive,

° Provide output data in engineering terms with all out-of-tolerance flagged.
) Determine event occurrence to permit trending of test data.

° Permit either computer-controlled or operator-controlled modes of testing.
° Permit self-check of the computer and all peripheral test equipment.

The system test software will also include a flight simulation program whose basic
purpose is to permit evaluation of spacecraft performance during envirommental tests.
The software will supply the reference against which spacecraft performance is com~
pared, This program is intended primarily for use during envirommental tests, but
will be applicable to any test location. As cen be noted from the above table,

there are no software programs specifically associated with the launch control
equipment.

5.6 INTERFACE IDENTIFICATION

Interfaces between the functional areas of the spacecraft system and the launch
vehicle, capsule bus, surface laboratory, launch operations, tracking and data acqui-
sition, and mission operations systems have been identified. At this level, these
interfaces are as shown in Figure 5-5.

Surface
g;s;;:urlle Bus t Sec. 5.6.1 Sec.5.6.4 — Laboratory
System
L h Vehicl Sec. 5.6.2 Spacecraft Sec. 5.6.5 Launch
S'cunc ehicle . 9.0, Spt ec. oo Operations
ystem I ystem System
Mission Sec. 5.6.3 Sec. 5.6.6 Tracking and
Operations na —#{ Data Acquisition
System System

Figure 5-5: SPACECRAFT SYSTEM INTERFACES

Further detail of these interfaces is presented in Section 1l.1l.3 of D2-115002-3, The

gection numbers shown in the figure relate to subsequent paragraphs that discuss
the interfaces in greater detail.
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5.6.1 Spacecraft System-to-Capsule System Interface

The spacecraft and capsule systems have physicsl, power, signal, and thermal inter-
faces between the capsule and the flight spacecraft as follows:

1) The physical interface between the capsule and spacecraft consist of a struce

tural field joint and the electrical and RF connectors on the interconnecting
cables.,

2) The power interface consists of four lines carrying a maximum of 200 watts.
This voltage will vary from 37 to 108 volts.

3) The signal interface consists of approximately 60 lines, including speres.
Eight of these are assigned to the telemetry downlink system for transmission
of capsule engineering data. Approximately 33 are reserved for command and
control functions. Capsule engineering data is converted to digital form in
the capsule and transmitted to the spacecraft at a rate of 5.8, 9.2, or 115.5
bps. Command signals are in the form of 6-volt, k4.8-kHz square waves.

4) The thermal interface occurs at the exterior surface of the capsule. Cooling
air will be supplied to the capsule exterior during ground operations.

5) Spacecraft OSE will include a capsule simulator designed to simulate all of
the above interfaces,

6) The spacecraft and capsule systems also have external signal interfaces within
the system test complex and in the launch control equipment.

In addition, there are four data interfaces between the spacecraft OSE and capsule
OSE as follows:

1) Capsule science data derived from the upper subcarrier by demodulation and
decoding in the spacecraft OSE is relayed to the capsule OSE.

2) Capsule engineering data via the lower subcarrier demodulators end format
identifiers is relayed to the capsule OSE.

3) RF links to the spacecraft relay receiver antenna for simulation of capsule~
to-spacecraft data transmission.

4) Capsule command data through the spacecraft OSE. (A design objective for the
spacecraft OSE should be to maintain the same characteristics for the 60-1ine
signal interface after planetary vehicle assembly as was seen prior to space-
craft-to-capsule mating).

5.6.2  Spacecraft System-to-Launch Vehicle System Interface

Physical, signal, and RF interfaces exist between the launch vehicle and the space-
craft, These are:

1) The planetary vehicles are structurally tied to the launch vehicle at eight
points of attachment between the spacecraft integral adapter and the shroud.

5-21
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The same attachment points are used by spacecraft assembly, handling, and
shipping equipment for structural support of the spacecraft during all assembly,
test, and shipping operations.

2) Signal and RF interfaces occur at the electrical and RF connectors between the
lower planetary vehicle and launch vehicle instrument unit. Signal interconnec=-
tions serve to transmit sensor data such as vibration, acoustic, and temperature
measurements required for launch evaluation purposes. RF connections to the
instrument unit provide for communication between the spacecraft and the DSIF-T1
during the launch phase. Radio communication during this period will be via
the instrument-unit-mounted antennas.

3) No interfaces between the spacecraft OSE and launch vehicle OSE have been
identified.

54663 Spacecraft System-to-Mission Operations System Interface

The mission operations system interfaces with the spacecraft through its RF system
and the MDE used in support of Voyager at the DSN site.

5.6.4 Spacecraft System-to-Surface Laboratory System Interface

For the purpose of this report, all interfaces between the spacecraft and surface

laboratory have been considered to be an element of the spacecraft to capsule system
interface.

5.6.5 Spacecraft System-to-Launch Operations System Interface

This interface includes physical, power, signal, RF, and envirormental control inter-
faces between the planetary vehicle and the launch operation system at the umbilical

connections and again at the junction between these lines and the spacecraft launch
control equipment.

5.6.6 Spacecraft System/Tracking and Data Acquisition System (TDAS) Interface

This interface includes the RF link between the spacecraft and the tracking and data

acquisition system. It also includes power, signal, and physical interfaces with
the spacecraft MIE.

5.7 OSE/MDE COMMONALITY

The test system and the MDE have several functional requirements in common. It is
desirable that they utilize identical equipment to meet these requirements. Tabulated

below are the hardware elements of MDE, These are discussed in detail in Volume IV,
Section 2,0 of this report.

Item Use in STC

Upper Subcarrier Demod (and Filter) X

Upper Subcarrier Synchronizer X

A/D Converter X
5-22
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Item Use in STC
Block Decoder X
Recorder X
Filter (two-Channel Demod) X
Lower Subcarrier Demod (and Filter) X
Lower Subcarrier Synchronizer X
Buffer and Formatter X

Tape Assembly

Test Selector

Block Comparator

Test Patch Panel

Data Printer

Control Panel

Real-Time Alarm

Computer and Sequence Display Console

These elements of MDE indicated above have a direct impact on signal demodulation,
decoding, and formatting and fulfill identical requirements in both MDE and OSE.
They should be used in both applications. MDE elements not considered common are
those unique to the local operation of the MDE but that have no direct impact on
signal processing.

The use of common hardware elements in OSE and MDE is of direct benefit in corre=-
lating data. However, the broader aspects of commonality, or at least similarity,
between mission operations and ground test operations should be considered. In the
latter case, similarity of software, data handling techniques, and recording techni-
ques is worthy of serious consideration. Any steps taken to simplify correlation
of data from all sources will contribute to a more effective mission operation.

5.8 APOLLO ACE AND SATURN ESE CONCEPT EVALUATION

The Apollo ACE and Saturn ESE concepts were evaluated for applicability to the 1973
Voyager program. Basically, both concepts are the seme, i.e., automated testing
through the use of general purpose computers to process data between operator con-
trol consoles and special purpose equipment that interfaces with the item under
test. In both cases, the functions of the special purpose equipment are the same,
l1.e., converting test item data to a form required by the item under test. Both
systems are fixed installations that can be a handicap if testing is required at
several locations. They employ the serial, preprogrsmmed test approach in which
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tests are run on a step-by-step basis and the eveluation is made by comparing test
results with preprogrammed limits. They also provide the capability of parallel
subroutine testing by time-sharing the computer central processors.

The Voyager spacecraft OSE should use the same basic concept as the Apollo-ACE and
the Saturn-ESE, i.e., automated testing involving operator consoles, computers, and
special purpose interfacing equipment.

Preliminary studies for a hardware design that would meet the OSE preliminary
requirements previously discussed indicate that several operational factors must be
seriously considered. These are:

1) A program schedule that calls for single launch at 2-year intervals.

2) The number of different locations at which tests must be conducted and the
desirability of using the same equipment at all locations.

3) The complexity of the testing required.

4)  The impact on facilities from the standpoint of modification required and
availability for an extended but intermittent program.

5) Total costs of new design, modifications, relocations, software, and
operations.

Considering these factors, a test system based on the Apollo ACE concept can be
implemented. Such a system, using today's state of the art, could be small enough
to be made mobile and thus reduce schedule, location, and facilities impacts.

The Apollo ACE and Saturn ESE concepts could be applied to the Voyager programe.
The application of the hardware would impose several program limitations. Among
the limitations are:

1) Schedule restraints

2) Operational inflexibility

3) Difficulty in data correlation

L) Iong-term facilities impacts.

The OSE concept applied to the Voyager program will avoid these limitations by

employing mobile test system approach within the framework of the basic Apollo/Saturn

test concepts.
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6.0 SPACECRAFT LOGISTICS CONSIDERATIONS

6.1 OBJECTIVE

The objective of this task was to evaluate the test and operational flows for the
Voyager spacecraft and to identify potential logistics problems.

6.2 APPROACH

The test and operational flows shown in Appendix A were reviewed in detail with
particular attention given to the general areas of assembly and test, site support
and transportation. In general, the approach was to define problems that could
not readily be solved by normal design practice and logistics planning. Such
problems generally fall into one of the following categories:

b

1) Problems that involve an interface with other contractors or government
agencies.

2) Problems that involve other programs from a schedule standpoint and hence
create questions as to equipment availability.

3) Problems that are coamon to all elements of the total Voyager program and
that should have a common solution.

6.3 PROBLEM AREAS AND RECOMMENDED SOLUTIONS

Analyses of the test and operations flows have disclosed the following logistics
problems.

6.3.1  Spacecraft Fueling Procedure

Use of the Apollo lunar module fueling system for spacecraft fueling on the launch
pad will require facility modification to the mobile service structure (MSS).

Discussion -~ It is desirable to fuel the spacecraft at the launch rad and to
utilize the existing facilities to the maximum extent possible. This approach
discloses the following problem areas:

1) Mobile service structure platformm levels are not in the right position for
spacecraft fueling.

2) Fuel and oxidizer lines are not physically campatible with Voyager
requirements.

3) Propellant storage is not sufficient for the Voyager requirement.
4)  The fuel metering system may require modification.

5) Weight verification of the fueled vehicle may be required.
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Recommendations -- The mobile service structure and the lunar module fueling system

should be reexamined and modification requirements esteblished. Schedule and hard-
ware interferences with the Apollo program or with other programs must be identified
so that any proposed modification is consistent with all requirements.

6.3.2 Payload Module Integration

The functional flows show that payload module integration is accomplished at the

spacecraft contractor's facility. The handling and shipping of the capsule, shrouds,

and payload modules impose unique transportation requirements.
Discussion

It is deemed desirable to minimize the amount of assembly and integration testing
at KSC. Therefore, most of these operations will be accomplished at some other lo-
cation. This requires that the spacecraft, capsule, and shrouds be shipped and
handled separately and possibly as a complete payload module. An examination of
this situation discloses several potential problem areas:

1) The structural features of the shroud may preclude horizontal positioning of
the payload module.

2) The size of a complete payload module precludes shipment by road or rail.
Structural features of the shroud may preclude shipment by air.

3) The number of assembly and disassembly operations may adversely affect payload
module reliability.

L) For the total Voyager program standpoint, cost effectiveness of multiple hand-
ling and shipping operations becomes a factor.

Recommendations -- The handling and transportation requirements for the spacecraft,
capsule, shrouds and payload module should be examined in detail. Particular em-
phasis should be directed to:

1) Modes of transportation existing and available and their adaptability.
2) Shroud structural features and possible modifications.

3) Schedule impacts of possible alternates.

4) Cost and reliability implications.

6.3.3 Payload Stack Test

A payload stack test of the flight ready payload modules and nose cone in the Voya-
ger final assembly area will require a special facility for lifting, stacking, and
tests.

Discussion -- The payload modules and nose cone require an integration test in the

full payload configuration prior to installation on the launch vehicle. This test
is required to minimize test time at the launch pad.
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Several equipment and facilities requirements of a specialized nature are imposed
by this test. Some of these are:

1) Room height must be sufficient to accommodate hoisting facilities having a
hook height of approximately 85 feet.

2) A Class 100,000 clean room requirement must be met.
3) Safety requirements relating to a fueled capsule must be met.

4) A number of special fixtures and handling devices must be provided to pemmit
safe and effective handling of the various payload elements.

Recommendations -- The specific facility, such as the pyrotechnic installation
building (PIB), in which this test may be performed, must be identified, because
it will impose constraints on equipment and provide interface definition. Modi-
fications and additions required must also be identified and planned. Schedule
impacts on other programs must be identified and accounted for.

6.3.4 Cleanliness and Contamination

The requirement for processing of the spacecraft as well as the assembled payload
modules in a clean facility creates unique handling and transportation problems.

Background -- The logistics of handling the relatively large payload modules in a
clean facility in accordance with Federal Standard 209a require specific attention.
Handling equipment currently designed for use in a clean room has generally been
sized for relatively small parts or subsystems. Existing equipments having the
capability of handling the payload elements may contribute excessively to the con-
tamination level in a clean facility and therefore may not be suitable for this
application.

There does not appear to be a single, cost-effective solution to problem stated.
The requirement must be met by a combination of:

1) Careful analyses and planning to reduce the amount of equipment required.
2) f existing equipment to meet minimum requirements.

3) Develomment of workarounds to minimize the impact of the equipment problem.
L) New design in those areas that cannot be accommodated in any other manner.
Reconmendations -- This problem should be the subject of a detailed study that

will identify hardware requirements, establish procedures, and conduct the trades
required to define the modifications, constraints, and new designs required.

6.3.5 Training

Training of contractor and NASA persomnel will be required to ensure continued
availability of qualified fabrication, maintenance, launch, and flight operations
personnel. The training problem is increased by the biennial flight program.
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Discussion -- Manufacturing personnel will be skilled craftsmen requiring training
and certification in specialized fields. Crews operating tracking stations will
require certification and training in the maintenance and operation of special
equipment. The launch and flight operations require training in mission operations.
The biennial mission schedule creates the necessity for retraining of experienced
personnel or training of new people for each mission.

Recommendations -- Develop a comprehensive training program that will:

1) Provide qualified personnel at the launch complex on a scheduled basis.
2) Provide qualified personnel at the DSN for the conduct of each mission.

3) Provide qualified personnel at the contractors facility to ensure continuity
and system growth.

6.3.6 Payload Module Malfunction

Critical launch windows require that a payload module failure on the pad is rapidly
corrected. Follow-on repair activates on failed payload modules must be preplanned
to ensure & backup capability.

Discussion -- The relatively short launch window available for Voyager, coupled
with the long interval (approximately 2 years) between windows, makes it imperative
that all possible steps be taken to ensure a successful launch. This imposes the
requirement for detailed plan of payload modules replacement and subsequent repair
and retest of the faulty module. This, in turn, requires a trade between onsite
capability and utilization of vendor standby capability.

Recommendation -- The logistics plan for spares, utilization of vendor capability,
onsite repair capability, onsite test capability, and shipping must be evaluated.
This evaluation should include a detailed analysis of possible failure modes and
the optimum actions to be taken.

6.3.7 Interface Between the Payload and Launch Operations System

The logistics interface between the Voyager payload and the launch operation system
is chiefly concerned with the facilities on the mobile launcher and the mobile ser-
vice structure and their utilization.

Discussion -- The mobile launcher and mobile service tower must be capable of ac-
complishing the following:

1) Lifting and stacking the payload modules, shroud, and nose cone.

2) Providing envirommental protection to the payload modules.

3) Fueling and charging pressurized systems in the payload modules.

4)  Providing work platforms (three levels) around the launch vehicle and payload.

5) Providing umbilical service to the payload modules.
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These requirements will be met by a combination of new equipment from several
sources, govermment-furnished equipment, and existing equipment. Operating pro-
cedures, spares procurement, shipping and handling requirements, and schedule im-
plementation must all consider these factors.

Recommendation -- A detailed analysis of pad operations should be made. It should
identify any additional procedures, equipment, and special shipping and handling
problems not being accommodated in the Apollo program.

6.3.8 Spares Considerations

Sparing is a problem because of the long interval between launches. The problem

is whether to purchase for all launches simultaneously or to purchase for one
launch at a time.

Discussion -- A maximum initial purchase of spares gives the assurance that parts

are available and are relatively independent of suppliers' changing products or
going out of business. On the other hand, obsolescense, shelf-life deterioration,
costs of storage, and costs of periodic test must be considered.

Recommendation -~ In spite of possible cost disadvantages, spares procurement

should follow the same sequence as spacecraft hardware procurement.
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ERRATA SHEET

Errata

Graph (a) change callout on P to read "0.52°/day"

Figure 3.1-24 in the definitions, change second entry
to read:
"T perpendicular to S, and lying parallel to
the ecliptic plane"

Figure 3.1-31 in the definition of the coordinate
system, change the second entry to read:
"T - normal to S and parallel to the plane
of the ecliptic”

First line of fourth paragraph, change "convariance"
to "covariance"

In the second line, change "Point" to'Pointing"

At the end of the eighth line of the second paragraph,
delete "p"

In the second line of the second paragraph, change
"1973-1979" to "1975-1979"

In Figure 4-2, in the upper part of the PLAN VIEW
change "+Z AXIS" to "-Z AXIS"

Below +Y axis in plan view change "(TYP. 4PL)"
to "(TYP. 2 PL)" for propulsion louver assembly callout

In the fourth line of the second paragraph, change
"5.4.1" to "5.4"

In the third line of the last paragraph, change
“patch® to "path®

In item 40) change "Rate -0.02 degree - 0.2 deg/sec"
to "Rate - 0.02 to 0.2 deg/sec)"



